ТЕОРЕТИЧЕСКАЯ И ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА

УДК 691.278, 536.2, 536.3

РАСЧЕТНАЯ ОЦЕНКА КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ СЛОЯ ВСПУЧЕННОГО ВЕРМИКУЛИТА МЕЖДУ ЧЕРНЫМИ СТЕНКАМИ

© 2022 г. А. В. Скурихин^{1,*}, А. В. Костановский^{1,2}

¹ ФГБОУ ВО "НИУ "МЭИ", Москва, 111250, Россия

² ОИВТ РАН, Москва, 125412, Россия

*e-mail: SkurikhinAV@mpei.ru; Andrey.Skurihin@yandex.ru

Поступила в редакцию 30.04.2022 г.

После доработки 02.05.2022 г.

Принята к публикации 04.05.2022 г.

В настоящей статье приводится расчетная оценка определения коэффициента теплопроводности (КТП) слоя вспученного вермикулита фракций 2—0.7 мм и 8-4 мм, который представляется как серый теплопроводный поглощающий (нерассеивающий) материал, заключенный между черными стенками. Рассматриваются температуры от 500 до 1300 К при нормальном атмосферном давлении. Для упрощения решения условия считаются стационарными, рассматривается одномерный случай. Принимается гипотеза локального термодинамического равновесия. Излучение считается некогерентным, неполяризованным и сосредоточенным между черными стенками. Учтено изменение степени черноты образца с ростом температуры. Полученное относительное отклонение расчетной оценки КТП вспученного вермикулита от его экспериментальных значений в широком диапазоне температур согласуются в пределах 15%, а также имеют высокий коэффициент корреляции (0.99), что может означать, что изложенная методика определения КТП как свойства вспученного вермикулита может быть применима. Выдвинуто предположение, что данная методика может принести удовлетворительные результаты и для некоторых других теплоизоляционных материалов, для чего требуются значения оптических и экспериментальных величин, таких как температуры на границах, толщина образца и др.

Ключевые слова: коэффициент теплопроводности, вермикулит, коэффициент поглощения, излучение, черные стенки

DOI: 10.56304/S2304487X22010102

1. ВВЕДЕНИЕ

Вермикулитом называется минерал, образующийся из гидрослюд, главным образом, из магнезиально-железистых — флогопита $K_2(Al_2Si_6)Mg_6O_{20}(OH)_4$ и биотита $K_2(Al_2Si_6)(Mg,Fe)_6O_{20}(OH)_4$ под воздействием гидротермальных процессов и других вторичных изменений [1]. Главное свойство вермикулита — это способность его частиц "вспучиваться", т.е. становиться пористыми при нагревании. Данный процесс происходит вследствие того, что содержащаяся в нем вода, превращаясь при нагревании в пар, создает значительное давление перпендикулярно плоскостям спайности в замкнутых межслоевых пространствах и раздвигает пластинки-чешуйки частиц вермикулита [1]. На вспучивание вермикулита может влиять образование одноименного положительного заряда после дегидратации на смежных поверхностях алюмосиликатных пакетов с обменными ионами между ними. Величина вспучивания зависит от фазового и зернового состава, структуры, сырья,

вида обменных ионов, наличия примесей, влажности, технологии обжига и пр. Полученный таким образом материал называется вспученный вермикулит (далее, для краткости, вермикулит), имеет низкий объемный вес в диапазоне, по большей части, от 75 до 250 кг/м³, его свойства зависят от чистоты сырья, режима обжига, размеров частиц и других факторов.

Вермикулит применяется в качестве теплоизоляционного материала (ТИМ) при температурах не выше 1373 К [2], коэффициент теплопроводности (КТП) которого составляет от 0.04 до 0.12 Вт/(м K) при T=300 К [3, 4].

В настоящей работе изучался вермикулит крупной (8-4 мм) и мелкой (2-0.7 мм) фракций, произведенный на Санкт-Петербургской слюдяной фабрике (г. Колпино).

Авторами ранее были проведены эксперименты по измерению коэффициента ослабления вермикулита по методике ИК Фурье-спектроскопии, а также определению его коэффициента по-

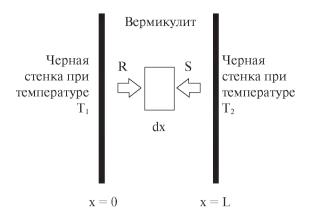


Рис. 1. К постановке задачи с черными стенками.

глощения (КП) с применением инструментария собственной разработки по моделированию рассеяния излучения [5, 6], которые могут применяться в расчетных задачах сложного теплообмена в ТИМ, где ощутимый вклад вносит излучение.

2. ПОСТАНОВКА, МЕТОДЫ И РЕЗУЛЬТАТЫ РЕШЕНИЙ ЗАДАЧИ ПО ОПРЕДЕЛЕНИЮ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ДЛЯ ОБРАЗЦА МЕЖДУ ЧЕРНЫМИ СТЕНКАМИ

В основе расчетной части настоящей работы использована методика [7]. Слой вермикулита толшиной L рассматривается как серый однородный (сплошной) поглощающий (нерассеивающий) изотропный материал, находящийся между двумя бесконечными плоскими черными стенками с температурами T_1 и T_2 (рис. 1). Внутренние источники тепла отсутствуют. Вклад конвекции не учитывается в силу малого размера пор вермикулита [8]. Рассматриваемые температуры выше 373 К при нормальном атмосферном давлении. Для упрощения решения условия считаются стационарными, рассматривается одномерный случай, а также принимается гипотеза локального термодинамического равновесия [9], что означает, что поглощательные способности (ПС) равны степеням черноты (СЧ) или излучательным способностям. Излучение считается некогерентным, неполяризованным и сосредоточенным между черными стенками.

В силу того, что вермикулит — полупрозрачный материал [5, 6], а решение подобной задачи уже приводилось для расплавленного стекла [7], можно предположить, что методика может быть применена для слоя вермикулита.

Как известно, общее выражение для плотности теплового потока (ПТП) теплопроводностью $q_{\scriptscriptstyle \rm T}$ имеет вид:

$$\frac{dq_{\rm T}(x)}{dx} = -\lambda_{\rm T} \frac{d^2T}{dx^2},\tag{1}$$

где T(x) — распределение температуры в слое, $\lambda_{\scriptscriptstyle T}$ — "кондуктивный" или "фононный" КТП при пренебрежимо малых его изменениях.

В рассматриваемом случае в стационарном теплообмене участвуют теплопроводность и излучение, общую ПТП $q_o = q_{\rm H} + q_{\rm T}$, можно записать в виде [10]:

$$q_o = \lambda \frac{T_1 - T_2}{L} + \sigma \frac{T_1^4 - T_2^4}{\frac{3}{4}\beta L + \frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2}} = \text{const}, \qquad (2)$$

где σ — постоянная Стефана—Больцмана, β — среднеинтегральный коэффициент ослабления вермикулита (по Планку), $\epsilon_1 = 1 - \rho_1$, $\epsilon_2 = 1 - \rho_2$ — ПС (или СЧ) на границах образца (среда оптически толстая), ρ_1 , ρ_2 — среднеинтегральные коэффициенты отражения.

Спектральный показатель преломления (ПП) n_v рассчитывается из соотношений Крамерса—Кронига с учетом диэлектрических потерь, формула для удобного практического применения которых взята из [11] 1 :

$$\Delta n_a = \frac{c}{2\pi a} \int_0^\infty \frac{d\alpha_\omega}{d\omega} \ln \left| \frac{\omega + a}{\omega - a} \right| d\omega, \tag{3}$$

где α_{ω} — спектральный КП, $\omega=2\pi \upsilon$ и a — циклические частоты излучения.

Спектральные ПС (СЧ) рассчитываются из ПП по формуле Данкла [12]:

$$\varepsilon_{v} = \frac{(4n_{v} + 2)}{3(n_{v} + 1)^{2}} + \frac{2n_{v}^{3}(n_{v}^{2} + 2n_{v} - 1)}{(n_{v}^{2} + 1)(n_{v}^{4} - 1)} - \frac{8n_{v}^{4}(n_{v}^{4} + 1)}{(n_{v}^{2} + 1)(n_{v}^{4} - 1)^{2}} \ln(n_{v}) - \frac{n_{v}^{2}(n_{v}^{2} - 1)^{2}}{(n_{v}^{2} + 1)^{3}} \ln\left(\frac{n_{v} - 1}{n_{v} + 1}\right).$$
(4)

Выражение для ПТП излучением $q_{\scriptscriptstyle \mathrm{H}}$ имеет вид:

$$\frac{dq_{\text{H}}(x)}{dx} = \frac{d(R(x) - S(x))}{dx} =$$

$$= 2\alpha\sigma T^4 - \alpha(R(x) + S(x)),$$
(5)

где R(x) и S(x) — плотности потока излучения слева и справа от малого элемента dx слоя материала (рис. 1), α — средний КП по Планку.

 $^{^1}$ Бесконечный интервал интегрирования по длинам волн заменялся довольно большим спектральным диапазоном от $\lambda_{\rm H}=1.3$ мкм до $\lambda_{\rm K}=27$ мкм [6], при этом, ошибка расчета не превышала 10%.

Среднеинтегральные значения оптических величин по Планку (такие как коэффициент отражения, ПП, коэффициент поглощения и др.) рассчитывались по формуле [12]:

$$\alpha = \frac{\int_{0}^{\infty} \alpha_{\lambda} E_{0\lambda} d\lambda}{\int_{0}^{\infty} E_{0\lambda} d\lambda}.$$
 (6)

Здесь $E_{0\lambda}$ — спектральная поверхностная плотность потока излучения абсолютно черного тела [14]. При этом, считалось, что α_{λ} не зависит от температуры.

Объединяя выражения для плотности теплового потока теплопроводностью (1) и излучения (5), получаем формулу для производной общей ПТП по координате:

$$\frac{dq_o(x)}{dx} = -\alpha(R+S) + 2\alpha\sigma T^4 - \lambda \frac{d^2T}{dx^2} = 0.$$
 (7)

Решение уравнения (7) для T(x) приведено в [7]:

$$T(x) = Be^{-mx} + Ce^{mx} - \frac{\alpha^2 q_{\text{общ}} x - \alpha A - 6\alpha\sigma \overline{T}^4}{\lambda m^2}, (8)$$

где \overline{T} — средняя температура в слое, m, A, B, C = = const.

2.1. Случай отсутствия соприкосновения

В случае отсутствия контакта между стенкой и образцом граничные условия запишутся в виде:

$$\frac{dT}{dx}(0) = \frac{dT}{dx}(L) = 0. (9)$$

Для (8) выражения для m, A, B, C:

$$B = -\frac{\alpha^2 q_o}{m^3 \lambda} \frac{1}{1 + e^{-mL}}, \qquad C = -Be^{-mL},$$

$$m^2 = \alpha^2 + \frac{8\alpha\sigma \overline{T}^3}{\lambda},$$
(10)

$$A = \frac{\alpha q_o}{m} \left(\frac{1 - e^{-mL}}{1 + e^{-mL}} \right) + 2\sigma T_0^4 + \alpha \lambda T_0 =$$

$$= -\frac{\alpha q_o}{m} \left(\frac{1 - e^{-mL}}{1 + e^{-mL}} \right) + \alpha \lambda T_L + \alpha q_o L + 2\sigma T_L^4.$$
(11)

Из [7] выражение для q_0 :

$$q_o = \frac{\frac{\alpha \lambda}{2} (T_0 - T_L)}{\frac{\alpha L}{2} + \frac{1+\rho}{1-\rho}} + \frac{\sigma (T_1^4 - T_2^4)}{\frac{\alpha L}{2} + \frac{1+\rho}{1-\rho}},$$
 (12)

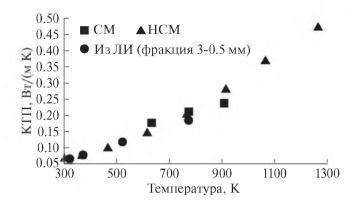


Рис. 2. График зависимости экспериментальных значений КТП фракции 2-0.7 мм от температуры, определенные различными методами: квадратные точки — из [15, 16] по стационарному методу (СМ) [17], треугольные — по нестационарному методу (НСМ): по методу горячей проволоки [18], круглые — по данным из литературных источников (ЛИ) для фракции 3-0.5 мм [1] (для сравнения).

где принято, что $T_1 > T_2$ — температуры черных стенок, $T_0 > T_L$ — температуры на границах слоя вермикулита, причем:

$$T_0^4 + T_L^4 = T_1^4 + T_2^4 . (13)$$

После того, как найдены итерационным методом из (10)—(13) значения T_0 и T_L , КТП можно найти следующим образом:

$$\lambda_{\text{pacy}} = \frac{q_o(T_0 - T_L)}{I}.$$
 (14)

2.2. Результаты решения задачи для бесконтактного случая

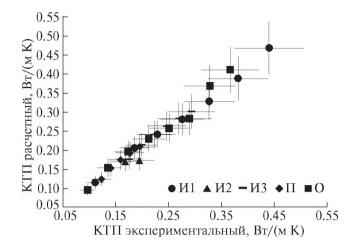
Экспериментальные результаты КТП являются эффективными². В требуемых температурных точках значения КТП, а также температуры на границах получены аппроксимацией из ранее определенных значений [15]. Методы ранее проведенных экспериментов — как стационарный [17], так и нестационарный [18] (рис. 2).

Результаты (табл. 1, 2, рис. 3, 4) приводятся для случая L=30 мм и для средних температур $T_{\rm cp}$ от 500 до 1300 К. Согласно результатам расчетов для трех засыпок в исходном (т.е. до обработки) или фабричном состоянии и после цикла повторных измерений (в целях проверки возможного изменения КТП) для фракции 2-0.7 мм (табл. 1, рис. 2) относительное отклонение (ОО) по приведенной схеме решения значений КТП расчетных от экс-

² В данной статье используется понятие "эквивалентный" или "эффективный" КТП. Им обладает такой однородный материал, через который при одинаковых форме, размерах и температурах на концах проходит та же ПТП, что и через данное пористое тело.

Таблица 1. Расчет КТП для вермикулита фракции 2-0.7 мм

T_1 , K	T_2 , K	чет КТП для верг λ _{эфф} , Вт/(м К)		T_0 , K	q_o , BT/M ²	λ_{pacy} , BT/(M K)	T _{cp} , K	α , M^{-1}	ОО КТП, %		
Исходный. Засыпка № 1											
604	396	0.111	438	590	581	0.114	500	20913	3		
938	462	0.186	558	922	2500	0.206	700	14023	11		
1082	518	0.229	618	1067	3624	0.242	800	12642	6		
1212	588	0.276	683	1198	4837	0.282	900	11 757	2		
1327	673	0.328	757	1314	6113	0.329	1000	11 161	1		
1427	773	0.383	843	1414	7419	0.390	1100	10748	2		
1513	887	0.442	944	1500	8718	0.471	1200	10458	7		
			•	И	сходный. З	Васыпка № 2					
814	386	0.168	491	797	1741	0.171	600	15740	2		
964	436	0.195	540	950	2371	0.173	700	13734	12		
			•	И	сходный. З	Васыпка № 3					
827	373	0.175	491	810	1875	0.177	600	15 528	1		
981	419	0.199	550	964	2950	0.214	700	13557	7		
1134	466	0.223	603	1119	4155	0.241	800	12258	8		
1287	513	0.247	652	1274	5477	0.264	900	11 351	7		
1441	559	0.271	698	1429	6918	0.284	1000	10698	5		
1594	606	0.294	742	1584	8481	0.302	1100	10223	3		
				Пос	ле повторн	ных измерений					
834	366	0.123	468	821	1453	0.124	600	15420	1		
990	411	0.141	524	977	2302	0.153	700	13467	8		
1145	455	0.159	574	1134	3250	0.174	800	12 182	10		
1301	500	0.177	621	1291	4297	0.192	900	11 287	9		
1456	544	0.195	665	1447	5450	0.209	1000	10645	7		
					После	обжига					
820	380	0.096	457	809	1111	0.095	600	15647	2		
968	432	0.135	531	956	2175	0.153	700	13684	14		
1117	483	0.174	592	1105	3351	0.196	800	12 379	13		
1266	534	0.213	647	1254	4645	0.230	900	11 462	8		
1414	586	0.251	699	1403	6058	0.258	1000	10798	3		
1563	637	0.290	749	1553	7590	0.283	1100	10309	2		


периментальных не выше 15%, что не более погрешности, установленной [17]. Проведение трех экспериментов измерения КТП и его расчетов для фракции 2—0.7 мм исходного состояния обеспечивает большую надежность при сопоставле-

нии их значений и оценки эффективности рассматриваемой методики.

Вертикальная засыпка (табл. 2) для фракции 8—4 мм означает, что частицы вермикулита уложены так, что их плоскости спайности и вектор

Таблица 2. Расчет КТП для вермикулита фракции 8-4 мм

<i>T</i> ₁ , K	<i>T</i> ₂ , K	$\lambda_{\rm 9 \varphi \varphi}, {\rm BT/}({\rm M}{ m K})$	T_L , K	T_0 , K	q_o , Bt/m ²	λ_{pacy} , Вт/(м K)	$T_{\rm cp},{ m K}$	α , M^{-1}	00 КТП, %		
Плоскопараллельная засыпка. Исходная											
826	374	0.139	476	811	1538	0.138	600	15549	1		
972	429	0.174	544	956	2620	0.191	700	13652	10		
1117	483	0.209	604	1103	3832	0.230	800	12 378	10		
1408	592	0.280	711	1396	6611	0.290	1000	10820	3		
1554	647	0.315	762	1543	8173	0.314	1100	10334	0		
Плоскопараллельная укладка. Повторы											
823	377	0.139	477	809	1526	0.138	600	15594	0		
973	427	0.167	541	958	2535	0.182	700	13637	9		
1123	478	0.195	597	1109	3665	0.215	800	12 3 3 8	10		
1272	528	0.223	649	1260	4906	0.241	900	11 427	8		
1422	578	0.251	698	1411	6260	0.263	1000	10767	5		
1572	629	0.279	746	1562	7728	0.284	1100	10283	2		
				_	· ·	ладка. После обж					
725	475	0.136	513	712	890	0.134	600	17488	1		
849	551	0.166	591	837	1461	0.178	700	15 185	8		
974	626	0.195	666	962	2090	0.212	800	13628	8		
1098	702	0.225	739	1087	2766	0.238	900	12519	6		
1223	777	0.255	812	1213	3486	0.261	1000	11 697	3		
1347	853	0.284	885	1338	4251	0.281	1100	11 072	1		
1472	928	0.314	958	1464	5063	0.300	1200	10591	5		
						пка. Исходный					
785	416	0.188	501	767	1590	0.179	600	16264	5		
912	488	0.267	585	892	2936	0.288	700	14328	8		
1040	560	0.345	660	1019	4451	0.373	800	12996	8		
1168	633	0.423	731	1147	6125	0.442	900	12033	4		
1295	705	0.502	800	1276	7936	0.500	1000	11 313	0		
1423	777	0.580	867	1405	9864	0.550	1100	10765 10344	5		
1550	849 922	0.659 0.737	934 1008	1534 1661	11 897 15 424	0.595 0.708	1200 1300	10344	11		
1678	922			l				10018	4		
70.6	41.4		_			ле повторных изм	_	16000	2		
786	414	0.224	511	766	1865	0.219	600	16233	2		
916	484	0.288	589	894	3161	0.310	700	14276	8		
1047	553	0.353	660	1025	4634	0.380	800	12937	8		
1177	623	0.418	727 702	1157	6257	0.437	900	11 973	5		
1307 1437	693 763	0.482 0.547	792 857	1288 1420	8009 9869	0.484 0.526	1000 1100	11 255 10 712	0		
1437	833	0.547 0.611	921	1552	11832	0.526	1200	10712	4 9		
1698	902	0.676	921	1682	15 381	0.363	1300	9975	1		
	102	0.070				ка. После обжига		7713	1		
	1 422	0.211		- 757	ьная засып 1706	0.207		16 11 1	2		
777 908	423 492	0.211 0.260	510 585	888	2827	0.207	600 700	16414 14376	2 7		
908 1040	560	0.260	585 654	1021	4091	0.279	800	12993	8		
1040	628	0.310	719	1154	5476	0.334	900	12993			
1304	628	0.360	719 784	1287	6962	0.378 0.415	1000	12004	5 1		
1436	764	0.410	847	1421	8540	0.415	1100	10718	3		
1567	833	0.439	910	1554	10205	0.446	1200	10718	3 7		
1699	901	0.559	910	1685	13510	0.473	1300	9972	3		
1022	701	0.333	702	1003	15510	0.570	1200	7714	J		

Рис. 3. Связь между расчетным и экспериментальным значениями КТП для фракции 2-0.7 мм.

ПТП параллельны, а плоскопараллельная засыпка, наоборот, что направление ПТП перпендикулярно плоскостям спайности частиц.

На рис. 2 и 3 приняты следующие условные обозначения:

1 для фракции 2-0.7 мм (на графике Φ 1, засыпка хаотичная): И — исходный, П — после повторных измерений, О — после обжига в муфельной печи при 1273 К (3 ч);

2 для фракции 8-4 мм (на графике Φ 2): засыпки: $\Pi\Pi$ — плоскопараллельная засыпка, B — вертикальная; состояния: U — исходное, U — после повторных измерений, U — после обжига.

Коэффициенты корреляции между экспериментальным и расчетными значениями КТП равен 0.99 для обеих фракций (рис. 3, 4).

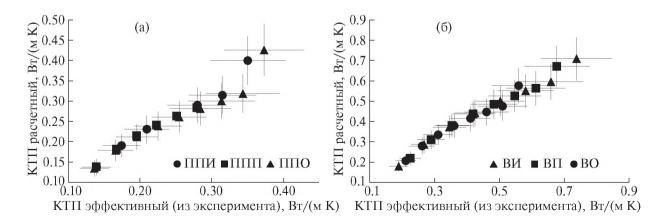
2.3. Случай наличия контакта между черными стенками и образцом (непрерывность температуры)

В случае непрерывности температур образца и абсолютно черных стенок (т.е. присутствует физический контакт между ними) граничные условия имеют вид:

$$T(0) = T_1; T(L) = T_2.$$
 (15)

Выражение для λ (q_0 определено в [7]):

$$\lambda = q_o \frac{L}{T_1 - T_2} = \frac{\sigma(T_1^2 + T_2^2)(T_1 + T_2) + \frac{\alpha \lambda}{2} + \frac{m\lambda(1 + \rho)(1 + e^{-mL})}{2(1 - \rho)(1 - e^{-mL})}}{\frac{1 + \rho}{1 - \rho} \left(1 - \frac{\alpha^2}{m^2} + \frac{\alpha^2 L(1 + e^{-mL})}{2m(1 - e^{-mL})}\right) + \frac{\alpha L}{2}},$$
(16)


где
$$m^2 = \alpha^2 + \frac{2\alpha\sigma(T_1^2 + T_2^2)(T_1 + T_2)}{\lambda}$$
.

2.4. Результаты случая непрерывной температуры

Результаты расчета для случая непрерывной температуры на границе приведены в таблицах и на рисунках ниже (табл. 3, 4, рис. 3, 4). Коэффициенты корреляции между экспериментальным и расчетными значениями КТП для обеих фракций составляют также 0.99.

3. УЧЕТ ИЗМЕНЕНИЯ СТЕПЕНИ ЧЕРНОТЫ

Для учета изменения степени черноты в (2) с ростом температуры предполагается в пером приближении, что среднеинтегральная СЧ (ПС) каждого компонента смеси проявляется независимо

Рис. 4. Связь между расчетным и экспериментальным значениями КТП для фракции 8-4 мм: а) ПП засыпка, б) Вертикальная засыпка.

Таблица 3. Результаты расчета для вермикулита фракции 2-0.7 мм

α , M^{-1}	T_1 , K	T_2 , K	q_o , Bt/m ²	$\lambda_{\mathrm{pac} ext{ $	ОО КТП, %	$\lambda_{9\Phi\Phi}$, Вт/(м К)	$T_{\rm cp}$, K
				Исходная засып	ка № 1		•
20913	604	396	790	0.114	3	0.111	500
14023	938	462	3231	0.204	10	0.186	700
12642	1082	518	4487	0.238	4	0.229	800
11 757	1212	588	5768	0.277	0	0.276	900
11 161	1327	673	7069	0.324	1	0.328	1000
10748	1427	773	8378	0.384	0	0.383	1100
10458	1513	887	9680	0.464	5	0.442	1200
	•	•		Исходная засып	ка № 2		•
15740	814	386	2412	0.169	0	0.168	600
13734	964	436	3004	0.171	14	0.195	700
9941	1714	686	8887	0.259	3	0.268	1200
9668	1865	735	10857	0.288	7	0.270	1300
		•	•	Исходная засып	ка № 3		
15 528	827	373	2643	0.174	1	0.175	600
13557	981	419	3938	0.210	6	0.199	700
12258	1134	466	5270	0.237	6	0.223	800
11 351	1287	513	6649	0.257	4	0.247	900
10698	1441	559	8097	0.275	2	0.271	1000
10223	1594	606	9629	0.292	1	0.294	1100
		•		После повторных и	змерений		
15549	826	374	2045	0.136	2	0.139	600
13652	972	429	3396	0.188	8	0.174	700
12 378	1117	483	4778	0.226	8	0.209	800
11 477	1263	538	6202	0.257	5	0.245	900
10820	1408	592	7683	0.282	1	0.280	1000
10334	1554	647	9237	0.305	3	0.315	1100
9971	1700	701	12915	0.388	11	0.351	1200
			После об	бжига в муфельной п	ечи при 1273 К (3 ч)		
15647	820	380	1370	0.093	3	0.096	600
13684	968	432	2702	0.151	12	0.135	700
12 379	1117	483	4065	0.192	11	0.174	800
11462	1266	534	5472	0.225	6	0.213	900
10798	1414	586	6942	0.251	0	0.251	1000
10309	1563	637	8487	0.275	5	0.290	1100

Таблица 4. Результаты расчета для вермикулита фракции 8-4 мм

α, m ⁻¹	T_1 , K	T_2 , K	$q_{\rm o}$, Bt/m ²	$\lambda_{\text{pacy}}, \text{Bt/(M*K)}$	ОО КТП, %	$\lambda_{9\Phi\Phi}, \mathrm{Br/}(\mathrm{M*K})$	$T_{\rm cp}$, K
	_			засыпка. Плоскопар	раллельная засыпка		
15549	826	374	2045	0.136	2	0.139	600
13652	972	429	3396	0188	8	0.174	700
12 378	1117	483	4778	0.226	8	0.209	800
11 477	1263	538	6202	0.257	5	0.245	900
10820	1408	592	7683	0.282	1	0.280	1000
10334	1554	647	9237	0.305	3	0.315	1100
9971	1700	701	12915	0.388	11	0.351	1200
					копараллельная засы		
15594	823	377	2026	0.136	2	0.139	600
13637	973	427	3259	0.179	7	0.167	700
12338	1123	478	4524	0.210	8	0.195	800
11 427	1272	528	5834	0.235	5	0.223	900
10767	1422	578	7208	0.256	2	0.251	1000
10283	1572	629	8658	0.275	1	0.279	1100
				бжига. Плоскопарал			
17488	725	475	1109	0.133	2	0.136	600
15 185	849	551	1764	0.177	7	0.166	700
13628	974	626	2432	0.210	8	0.195	800
12519	1098	702	3121	0.236	5	0.225	900
11697	1223	777	3835	0.258	1	0.255	1000
11072	1347	853	4584	0.278	2	0.284	1100
10591	1472	928	5374	0.297	6	0.314	1200
10218	1596	1004	6212	0.315	9	0.344	1300
			И	сходный. Вертикалы	ная засыпка		
16264	785	416	2182	0.178	6	0.188	600
14328	912	488	4028	0.285	7	0.267	700
12996	1040	560	5893	0.369	7	0.345	800
12033	1168	633	7782	0.436	3	0.423	900
11 313	1295	705	9706	0.493	2	0.502	1000
10765	1423	777	11 673	0.542	7	0.580	1100
10344	1550	849	13691	0.586	12	0.659	1200
10018	1678	922	17 578	0.697	6	0.737	1300
		•	После повто	рных измерений. В	ертикальная засыпка		
16233	786	414	2701	0.218	3	0.224	600
14276	916	484	4431	0.307	6	0.288	700
12937	1047	553	6183	0.376	7	0.353	800
11 973	1177	623	7962	0.431	3	0.418	900
11255	1307	693	9779	0.478	1	0.482	1000
10712	1437	763	11 640	0.518	6	0.547	1100
10296	1567	833	13561	0.554	10	0.611	1200
9975	1698	902	17465	0.659	3	0.676	1300
	I	l		ле обжига. Вертикал			I
16414	777	423	2417	0.205	3	0.211	600
14 376	908	492	3843	0.203	6	0.260	700
12993	1040	560	5289	0.330	7	0.310	800
12004	1172	628	6764	0.373	4	0.360	900
11 271	1304	696	8275	0.409	0	0.410	1000
10718	1436	764	9833	0.440	4	0.459	1100
10296	1567	833	11450	0.468	9	0.509	1200
9972	1699	901	15064	0.566	1	0.559	1300
	10//	701	15007	0.500	1	0.557	1500

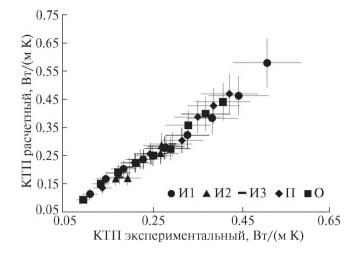
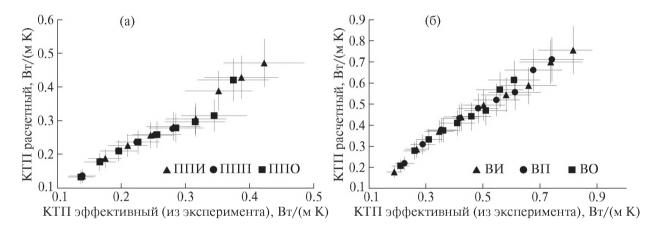



Рис. 5. Связь между расчетным и экспериментальным значениями КТП для фракции 2-0.7 мм.

Рис. 6. Связь между расчетным и экспериментальными значениями КТП для фракции 8-4 мм: а) ПП засыпка, б) Вертикальная засыпка.

от других веществ, а полная СЧ (ПС) смеси определяется суперпозицией (наложением) СЧ (ПС)

всех индивидуальных соединений, входящих в ее состав [12].

Таблица 5. Химический состав вермикулита из ЛИ (приведены в т.ч. усредненные значения по различным месторождениям)

No /			H ₂ O	Corresso						
№ п/п	SiO ₂	Al_2O_3	MgO	Fe ₂ O ₃	FeO	CaO	Прочие	1120	Ссылка	
1	37.8	14.5	21.3	7.9	0.1	2.1	10.4	5.9	[1]	
2	37.2	14.3	21.3	6.6	2.6	2.4	2.5	13.1	[20]	
3	36.0	13.8	20.4	7.7	0.4	1.7	4.2	16.6	[21]	
4	37.5	11.1	20.7	13.3	1.4	1.6	4.7	10.2	[22]	
5	35.7	12.2	24.8	6.2	1.2	2.2	11.5	6.1	[23]	
Среднее	36.8	13.2	21.7	8.3	1.2	2.0	6.6	10.4	_	

SiO₂ Al_2O_3 Температура, К MgO Вермикулит 300 1.00 1.00 1.00 1.00 400 0.98 0.98 0.94 0.97 500 0.95 0.94 0.87 0.92600 0.89 0.89 0.80 0.86 700 0.84 0.84 0.73 0.81 800 0.76 0.79 0.67 0.74 900 0.71 0.75 0.63 0.69 0.71 0.59 1000 0.65 0.64 0.59 1100 0.56 0.72 0.57 1200 0.51 0.70 0.54 0.55 1300 0.48 0.68 0.53 0.53 1400 0.45 0.66 0.53 0.51

0.60

0.59

0.52

0.51

0.49

0.48

Таблица 6. Рассчитанное изменение величины относительной (при T = 300 K) интегральной СЧ (ПС) от температуры [24]

В силу того, что в вермикулите приблизительные массовые доли оксидов MgO -22%, SiO₂ -37% и $Al_2O_3 - 13\%$ (табл. 5), то для упрощения принималось, что вермикулит – трехкомпонентный материал, т.е. смесь, состоящая только из данных оксидов. Содержание (по массе) остальных оксидов ниже: $Fe_2O_3 - 8\%$, FeO - 1%, CaO - 2%, $H_2O - 10\%$, прочие -7% [1, 20–23]. Помимо этого, влияние их СЧ (ПС) не учитывалось с ростом температуры из-за слабой изученности излучательных свойств данных оксидов (FeO. Fe₂O₃, CaO и др.) и, как следствие, недостаточности информации по ним в ЛИ. В настоящей статье предпринята попытка учесть величину изменения СЧ (ПС) по ЛИ в рамках расчета КТП вермикулита при лучисто-кондуктивном теплообмене.

1500

1600

Для относительной ПС (СЧ) вермикулита ε_o :

$$\varepsilon_o \approx \frac{1}{w_o} (w_{\rm MgO} \varepsilon_{\rm MgO} + w_{\rm Al_2O_3} \varepsilon_{\rm Al_2O_3} + w_{\rm SiO_2} \varepsilon_{\rm SiO_2}), \quad (17)$$

где $w_o = w_{\rm MgO} + w_{\rm Al_2O_3} + w_{\rm SiO_2}$, $\varepsilon_{\rm SiO_2}$, $\varepsilon_{\rm MgO}$, $\varepsilon_{\rm Al_2O_3} - {\rm CY}$ (ПС) чистых материалов SiO₂, MgO, Al₂O₃ соответственно, $w_{\rm MgO}$, $w_{\rm Al_2O_3}$, $w_{\rm SiO_2}$ — их массовые доли (табл. 6).

Данные по относительной СЧ (ПС) из разных ЛИ для оксидов магния, кремния и алюминия довольно сильно отличаются друг от друга (табл. 7). Также наблюдается в разной степени отклонение с уже рассчитанными значениями (табл. 6) для MgO (от 2 до 26%), для Al_2O_3 (от 5 до 25%) и для SiO_2 (от 4 до 33%), поэтому для практических расчетов взяты их средние значения.

0.52

0.51

4. ВЫВОДЫ

Полученное относительное отклонение расчетной оценки КТП вермикулита от его экспериментальных значений в широком диапазоне температур (от 500 до 1300 К) согласуются в пределах 15%. В силу близости расчетных и экспериментальных значений, а также высокого коэффициента корреляции между ними, можно заключить, что изложенная в настоящей статье методика определения КТП как свойства вермикулита может быть применима. Также можно предположить, что данная методика может быть применима и к некоторым другим ТИМ. Для того, чтобы ею воспользоваться, требуются значения оптических и экспериментальных величин (температуры на границах, толщина образца и др.).

Таблица 7. Сравнение полученных расчетных (относительных) значений ПС (СЧ) с данными из ЛИ и их изменения с ростом температуры

<i>T</i> , K	Снижение СЧ (ЛИ) ²	Изменение СЧ (СР)	Δ , %	Снижение СЧ (ЛИ)	Снижение СЧ (СР)	Δ, %					
	Al ₂ 0	\mathcal{D}_3	MgO								
Данные	из [19] ^{1,3}										
600	0.84	0.91	8	0.83	0.85	3					
800	0.73	0.81	11	0.71	0.72	2					
1000	0.64	0.73	13	0.60	0.63	4					
1200	0.58	0.72	23	0.51	0.58	13					
1400	0.54	0.68	25	0.46	0.56	23					
1600	0.52	0.60	15	0.43	0.54	26					
	Данные из [24] ⁴										
860	0.95	0.77	9	0.94	0.65	10					
973	0.89	0.72	11	0.87	0.60	12					
1173	0.88	0.71	24	0.80	0.55	16					
1373	0.83	0.67	24	0.76	0.53	12					
1573	0.73	0.59	5	0.74	0.51	1					
1679	0.71	0.57	10	0.73	0.50	5					
			SiO ₂								
	SiO ₂ (криста.	плический)	Квар	оцевое стекло							
800	_	_	_	0.82	0.86	4					
1000	_	_	_	0.70	0.73	4					
1200	0.90	1.02	11	0.62	0.57	8					
1450	0.84	1.06	21	0.58	0.51	13					
1600	0.73	1.10	33	_	_	_					

¹ Нормальные интегральные излучательные способности пересчитаны в интегральную полусферическую СЧ по методике из [14].

СПИСОК ЛИТЕРАТУРЫ

- 1. Спирина В.С., Ахтямов Р.Я. Керамовермикулитовые изделия для футеровки тепловых агрегатов в промышленности строительных материалов: Аналит. обзор (Промышленность строительных материалов // ВНИИ НТИ и экономики пром-сти строит. материалов. Серия 4. Промышленность керамических стеновых материалов и пористых заполнителей). М.: ВНИИЭСМ, 1991. 54 с.
- 2. *Чиркин В.С.* Теплопроводность промышленных материалов. М.: Гос. науч.-техн. изд-во машиностроител. лит., 1962.
- 3. *Кальянов Н.Н., Мерзляк А.Н.* Вермикулит и перлит пористые заполнители для теплоизоляционных

- изделий и бетонов //под ред. В.А. Китайцева. М.: Гос. изд-во лит. по стр-ву, архитектуре и строит. материалам, 1961. 150 с.
- 4. Производство и применение вермикулита / под ред. проф. Н.А. Попова. М.: Стройиздат, 1964. 128 с.
- Скурихин А.В., Костановский А.В. Определение коэффициента поглощения термовермикулита // Приборы, 2019. № 5 (227).
- Скурихин А.В., Костановский А.В., Белусь С.К.
 Определение коэффициентов рассеяния и поглощения излучения вспученного вермикулита совместно методами эксперимента и моделирования //
 Вестник "НИЯУ "МИФИ". 2021. Т. 10. № 3.
 С. 195–207.

 $^{^{2}}$ СР — собственные расчеты (по табл. 6), Δ — относительное расхождение в значениях уменьшения СЧ между данными из ЛИ и по СР в процентах.

 $^{^3}$ Применялось отношение СЧ при температурах из первого столбца и температуре T = 400 K, т.е. при T = 400 K СЧ условно принята за единицу.

⁴ Аналогично примечанию 3 настоящей таблицы при T = 773 K.

 $^{^5}$ Для кристаллического кварца находилось отношение СЧ при температурах из первого столбца и T = 1100 K, а для кварцевого стекла — при T = 600 K.

- 7. *Kellet B.S.* The steady flow of heat through hot glass // J. Opt. Soc. Amer., 1952, V. 42. № 5. P. 339–343.
- 8. *Юрков А.Л., Скурихин В.В., Скурихин А.В.* Поровая структура вспученного вермикулита // Техника и технология силикатов, 2020. Т. 27. № 4. С. 103—107.
- 9. *Адрианов В.Н.* Основы радиационного и сложного теплообмена. М.: Энергия, 1972. 464 с., ил.
- Шорин С.Н. Теплопередача. М.: Изд-во "Высшая школа", 1964, 490 с.
- 11. *Мосс Т*. Оптические свойства полупроводников / пер. с англ. М.М. Горшкова под ред. В.С. Вавилова. М.: Изд-во иностран. лит., 1961. 304 с., ил.
- 12. *Оцисик М.Н.* Сложный теплообмен / пер. с англ. под ред. д-ра техн. наук Н.А. Анфимова. М.: Изд-во "Мир", 1976. 616 с.
- 13. *Блох А.Г., Журавлев Ю.А., Рыжков Л.Н.* Теплообмен излучением: Справочник. М.: Энергоатомиздат, 1991. 432 с.
- 14. *Зигель Р., Хауэлл Дж.* Теплообмен излучением / пер. с англ. под ред. д-ра техн. наук Хрусталева Б.А. М.: Изд-во "Мир", 1975.
- 15. Скурихин А.В., Костановский А.В., Маркелов С.А. Установка для измерения коэффициента теплопроводности сыпучих огнеупоров стационарным методом (на примере вспученного вермикулита) // Приборы, 2019. № 10 (232). С. 48—51.
- 16. Сакулин А.В., Маргишвили А.П., Коваленко А.А., Скурихин А.В. Исследование вспученного вермикулита // Огнеупоры и техническая керамика, 2019. Вып. 11–12. С. 3–13.

- 17. ГОСТ 12170-85. Огнеупоры. Стационарный метод измерения теплопроводности.
- 18. ISO 8894-2:2007 Refractory materials Determination of thermal conductivity Part 2: Hot-wire method (parallel).
- 19. Излучательные свойства твердых материалов. Справ. под общ. ред. А.Е. Шейндлина. М.: Энергия, 1974. 472 с.
- 20. Дубенецкий К.Н., Пожнин А.П. Вермикулит (свойства, технология и применение в стр-ве). Л.: Изд-во лит. по стр-ву, 1971. 174 с.
- 21. *Львова И.А.* Месторождения вермикулита СССР. (Формационные типы и закономерности размещения) // Труды Всесоюз. ордена Ленина научисслед. геол. ин-та, Л.: Недра, 1974. Т. 216. 231 с.
- 22. *Никольский Г.Г., Пожнин А.П.* Вермикулит, его свойства и применение в строительстве: Материалы краткосроч. семинара "Эффективные строительные материалы и их применение в конструкциях". Л.: Ленинград. Дом науч.-техн. пропаганды, 1963.
- 23. Рычков А.А. Разливка стали с применением экзотермической шлакообразующей смеси, изготовленной на основе вспученного вермикулита. Пр-во и применение вермикулита // Сб. статей. Челябинск: УралНИИСтромпроект, 1983. С. 112.
- 24. *Алленштейн Й. и др.* Огнеупорные материалы. Структура, свойства, испытания: справ. / под ред. Г. Роучка, Х. Вутнау, пер. с нем. М.: Интермет Инжиниринг, 2010. 392 с.

Vestnik Natsional'nogo Issledovatel'skogo Yadernogo Universiteta "MIFI", 2022, vol. 11, no. 1, pp. 9–21

Calculated Estimate of the Thermal Conductivity of Exfoliated Vermiculite Layer between Black Walls

A. V. Skurikhin^{a,#} and A. V. Kostanovsky^{a,b}

^a National Research University Moscow Power Engineering Institute, Moscow, 111250 Russia
 ^b Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412 Russia
 [#]e-mail: SkurikhinAV@mpei.ru, Andrey.Skurihin@yandex.ru
 Received April 30, 2022; revised May 2, 2022; accepted May 4, 2022

Abstract—The thermal conductivity of an exfoliated vermiculite layer of 0.7—2 and 4-8 mm fractions, which is represented as a gray heat-conducting absorbing (non-scattering) material enclosed between black walls, has been estimated at temperatures from 500 to 1300 K and normal atmospheric pressure. To simplify the problem, stationary conditions and a one-dimensional case are considered. The hypothesis of local thermodynamic equilibrium is accepted. Radiation is assumed to be incoherent, unpolarized, and concentrated between black walls. The change in the emissivity with increasing temperature is also taken into account. The resulting relative deviation of the estimated thermal conductivity coefficient from its experimental values in a wide temperature range is no more than 15% and has a high correlation coefficient, which may mean that the described method of determining the thermal conductivity coefficient as a property of expanded vermiculite can be applicable. The technique can assumingly provide satisfactory results for some other heat-insulating materials with known parameters such as temperatures at boundaries and sample thickness.

Keywords: thermal conductivity, vermiculite, absorption coefficient, radiation, black wall

DOI: 10.56304/S2304487X22010102

REFERENCES

- 1. Spirina V.S., Akhtyamov R.Ya. Ceramic vermiculite products for lining thermal units in the building materials industry: Analyt. review. (Industry of building materials / VNII NTI and economics of the industry of building materials. Series 4. Industry of ceramic wall materials and porous aggregates) [Ceramovermiculite wares for thermal units' inwall of building materials industry: analytic review. Industry of building materials. Series 4. Industry of ceramics and wall materials and porous fillers]. Moscow, VNIIESM Publ., 1991, 55 p.
- 2. Chirkin V.S. *Teploprovodnost' stroitel'nykh materialov* [Thermal conductivity of industrial materials]. Moscow, State Scientific and Technical Publishing House of Engineering Literature Publ., 1962.
- 3. Kalyanov N.N., Merzlyak A.N. *Vermikulit I perlit poristye zapolniteli dlya teploizolyatsionnykh izdeliy I betonov* [Vermiculite and perlite are porous fillers for heatinsulating products and concretes], ed. By V.A. Kitaitsev. Moscow, State Publishing house of construction, architecture and building materials literature Publ., 1961, 150 p.
- Proizvodstvo i primeneniye vermikulita [Production and application of vermiculite], ed. By, Dr. of tech. sciences N.A. Popov. Moscow, Stroyizdat Publ., 1964, 128 p.
- Skurikhin A.V., Kostanovskiy A.V. Opredeleniye koeffitsienta pogloscheniya vermikulita [Determination of absorption coefficient of thermovermiculite]. *Pribory*, 2019, no. 5 (227) (in Russian).
- 6. Skurikhin A.V., Kostanovskiy A.V., Belus' S.K. Opredeleniye koeffitsientov rasseyaniya I pogloscheniya izlucheniya vspuchennogo vermikulita sovmestno metodami experimeta I modelirovaniya [Determination of exfoliated vermiculite scattering and absorption coefficients jointly by modeling and experimental methods]. *Vestnik NIYaU MIFI*, 2021, vol. 10, no. 3, pp. 195–207 (in Russian).
- 7. Kellet B.S. The steady flow of heat through hot glass. *J. Opt. soc. Amer.*, 1952, vol. 42, no. 5, pp. 339–343.
- 8. Yurkov A.L., Skurikhin V.V., Skurikhin A.V. Porovaya struktura vspuchennogo vermikulita [Pore structure of exfoliated vermiculite]. *Tekhnika I Tekhnologiya silikatov*, 2020, vol. 27, no. 4, pp. 103–107 (in Russian).
- 9. Adrianov V.N. *Osnovy radiatsionnogo I slozhnogo te-poobmena* [Fundamentals of radiation and complex heat transfer]. Moscow, Energiya Publ., 1972, 464 p., ill.
- 10. Shorin S.N. *Teploperedacha* [Heat Transfer]. Moscow, Higher School Publ.,1964, 490 p.
- 11. Moss T. *Opticheskiye svoystva poluprovodnikov* [Optical properties of semiconductors] translated from English by M.M. Gorshkov, ed. By V.S. Vavilov. Moscow, Foreign Literature Publ.,1961, 304 p., ill.
- 12. Otsisik M.N. *Slozhnyy teploobmen* [Complex heat transfer] / translated from English and ed. by Dr. of tech. Sciences N.A. Anfimov. Moscow, Mir Publ., 1976, 616 p.
- 13. Blokh A.G., Zhuravlev Yu.A., Ryzhkov L.N. *Teploobmen izlucheniyem: Spravochnik* [Heat transfer by radiation: Handbook]. Moscow, Energoatomizdat Publ., 1991, 432 p.

- Siegel R., Howell J. *Teploobmen izlucheniyem* [Thermal radiation heat transfer] translated from English and ed. by Dr. of technical sciences Khrustalyova B.A. Moscow, Mir Publ., 1975.
- 15. Skurikhin A.V., Kostanovsky A.V., Markelov S.A. Ustanovka dlya izmereniya koeffitsienta teploprovodnosti sypuchikh ogneuporov statsionarnym metodom (na primere vspuchennogo vermikulita) [Thermal conductivity measurement device of loose refractories by steady-state technique (on exfoliated vermiculite sample)]. *Pribory*, 2019, no. 10 (232), pp. 48–51.
- 16. Sakulin A.V., Margishvili A.P., Kovalenko A.A., Skurikhin A.V. Issledovaniye vspuchennogo vermikulita [Study of exfoliated vermiculite]. *Ogneupory i technicheskaya keramika*, 2019, no. 11–12, pp. 3–13. (in Russian)
- 17. GOST 12170-85. *Ogneupory. Statsionarnyi metod izmereniya teploprovondosti* [State Standard 12170-85. Refractories. Stationary method of thermal conductivity measuring]. Moscow, Standartinform Publ., 2003, 6 p.
- 18. ISO 8894-2:2007 Refractory materials Determination of thermal conductivity Part 2: Hot-wire method (parallel).
- 19. *Izluchatel'nye svoystva tverdykh materialov. Spravochnik* [Radiative properties of solid materials. Reference book]. Totally ed. by A.E. Sheindlin. Moscow, Energy Publ., 1974, 472 p.
- 20. Dubenetsky K.N., Pozhnin A.P. *Vermikulit (svoystva, tekhnologiya I primeneniye v stroitel'stve)* [Vermiculite (properties, technology and application in construction)]. Leningrad, Construction literature Publ., 1971, 174 p.
- 21. L'vova I.A. Mestorozhdeniya vermikulita SSSR (Formatsionnye tipy I zakomonernosti razmescheniya) [Deposits of vermiculite in the USSR. (Formation types and placement patterns)]. *Trudy Vsesoyuz. ordena Lenina nauch.-issled. geol. in-ta,* [Proceedings of the All-Union Order of Lenin Scientific and Research Geological Institute], Leningrad, Nedra Publ., 1974, vol. 216, 231 p.
- 22. Nikolsky G.G., Pozhnin A.P. Vermikulit, yego svoystva I primeneniye v stroitevstve [Vermiculite, its properties and application in construction]. *Materialy kratkosrochnogo seminara "Effectivnye stroitel'nye materialy i ikh primeneniye v stroitel'stve"* [Materials of short-term seminar "Effective building materials and their application in constructions"]. Leningrad, Leningradskiy dom nauchno-tekhnicheskoy propagandy Publ., 1963.
- 23. Rychkov A.A. [Steel pouring using an exothermic slagforming mixture based on expanded vermiculite]. *Proizvodstvo I primeneniye vermikulita: Sbornik statey* [Production and use of vermiculite: Miscellany of articles]. Chelyabinsk, UralNIIStromproekt Publ., 1983. pp. 112.
- 24. Allenshtejn J. Ogneupornye materialy. Struktura, svoystva, ispytaniya: spravochnik [Refractory materials. Structure, properties, tests: Reference book] ed. by G. Rouchka, H. Wuthnau, translated from German. Moscow, Intermet Engineering Publ., 2010, 392 p.