ВЕСТНИК НАЦИОНАЛЬНОГО ИССЛЕДОВАТЕЛЬСКОГО ЯДЕРНОГО УНИВЕРСИТЕТА "МИФИ", 2022, том 11, № 2, с. 101–108

—— ТЕОРЕТИЧЕСКАЯ И ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА ———

УДК 536.2.083

ПАРАМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ ПАДАЮЩЕГО ТЕПЛОВОГО ПОТОКА НА ЗЕРКАЛЬНЫЕ ЭЛЕМЕНТЫ КОСМИЧЕСКИХ ОБСЕРВАТОРИЙ

© 2022 г. Н. О. Борщев^{1,*}

¹ Астрокосмический центр Федерального государственного учреждения науки институт им. С.А. Лебедева, Москва, 119991, Россия

> *e-mail: moriarty93@mail.ru Поступила в редакцию 06.08.2022 г. После доработки 08.08.2022 г. Принята к публикации 09.08.2022 г.

В данной работе предлагается метод параметрического определения падающей тепловой удельной нагрузки на зеркальные элементы космических систем. Данная задача решается как задача поиска экстремума между теоретическим и экспериментальным полем температур в местах установки датчиков температур. Но сперва необходимо решить "прямую" задачу теплообмена для испытуемого объекта и задаться базисными функциями, описывающими форму теплового падающего потока. Процесс теплообмена сопровождается одномерным лучисто-кондуктивным теплопереносом внутри материала, таким образом, помимо решения уравнения теплопроводности необходимо решить уравнение переноса излучения внутри зеркального элемента. В качестве граничных условий применяются равенства тепловых потоков, с одной стороны результирующий тепловой поток, с другой нулевой из-за нулевых теплоприток к нижнему основанию зеркала, так как для моделирования одномерного прогрева все поверхности, кроме одной теплоизолированные. Далее составляется среднеквадратичное отклонение между экспериментальным и теоретическим полем температур и полученный функционал минимизируется. Для преодоления некорректности из-за неточности исходных данных применяется регуляризация. В качестве метода регуляризации выбран метод итерационной регуляризации, где регуляризирующим параметром является номер итерации. В качестве алгоритма оптимизации выбран метол сопряженных гралиентов, как наиболее точный метол первого порядка сходимости. Полученные результаты могут использоваться для оценки граничных условий изделий для широкого диапазона температур.

Ключевые слова: обратная задача теплопроводности, метод итерационной регуляризации, среднеквадратичная ошибка, температурное поле, космический аппарат

DOI: 10.56304/S2304487X22020031

введение

При проектировании теплового режима космических аппаратов, функционирующих на орбитальном участке полета, необходимо знать траекторные баллистические параметры орбиты для определения интегрального теплового воздействия на элементы конструкции. В работе предлагается метод определения этого теплового нагружения как функции от времени на основе замеров температур вдоль толщины зеркального элемента конструкции, полученных в ходе тепловакуумной наземной отработки изделия.

1. ПОСТАНОВКА ЗАДАЧИ ТЕПЛООБМЕНА

Первым шагом в восстановлении материала является составление постановки "прямой" зада-

чи теплообмена конструкции, моделирующей натурные условия эксперимента, в данном случае речь идет об условиях функционирования на орбитальном участке полета.

Применительно к данной постановке задачи можно применить упрощенную одномерную постановку задачи теплопроводности при допущении о малом перераспределении теплового потока по поверхности прибора при его одномерном нагреве:

$$C_{\mathrm{s}\phi}(T)\frac{\partial T(x,\tau)}{\partial \tau} = \frac{\partial}{\partial x} \left[\lambda_{\mathrm{s}\phi}(T)\frac{\partial T(x,\tau)}{\partial x} \right] + \frac{\partial q_{\mathrm{H}_{3}\pi}(x,\tau)}{\partial x};$$

$$\frac{\partial q_{\mathrm{H}_{3}\pi}(x,\tau)}{\partial x} = \varepsilon(T)\lambda_{\mathrm{s}\phi}(T)\frac{\partial T(l_x,\tau)}{\partial x} - q_{\mathrm{max}}(l_x,\tau)\delta(x,T)n(x).$$

Выражение для толщины оптического слоя имеет вид:

$$\delta = \frac{1}{l_x} \int_0^{l_x} e^{\varepsilon(T)x} dx.$$

При функционировании на орбитальном участке полета, космический аппарат (КА) подвергается лучисто-кондуктивному теплообмену, граничные условия формируются интегральным тепловым лучистым потоком с Земли, Солнца [1], потоком, формируемым за счет многократного переизлучения между элементами самой конструкции и малоатмосферным тепловым потоком. Таким образом, граничные условия можно записать в виде:

$$\frac{\partial T(0,\tau)}{\partial x} = 0;$$

$$T(0) = T_0; \quad \lambda_{\rm sp}(T) \frac{\partial T(l_x,\tau)}{\partial x} = q_{\rm mag}(\tau) - \varepsilon(T)\sigma T(l_x,\tau)^4;$$

 $C_{3\phi}(T)$ — эффективная объемная теплоемкость материала, $\frac{\Pi \pi}{K}$; $\lambda_{3\phi}(T)$ — эффективная теплопроводность материала, $\frac{BT}{MK}$; $q_{_{\rm ИЗЛ}}(x,\tau)$ — удельный тепловой поток, поглощаемый оптическим зеркальным слоем, $\frac{BT}{M^2}$; $\varepsilon(T)$ — отражательно-излучательная характеристика материала; σ — постоянная Стефана—Больцмана $\frac{BT}{K^4 M^2}$; n(x) — коэффициент преломления среды; $q_{_{\rm пад}}$ — падающий удельный тепловой поток на облучаемую поверхность $\frac{BT}{M^2}$.

2. АЛГОРИТМ ИДЕНТИФИКАЦИИ ПАДАЮЩЕГО ТЕПЛОВОГО ПОТОКА КАК ФУНКЦИИ ОТ ВРЕМЕНИ

В данной работе используются кусочно-постоянные базисные функции, имеющие следующий вид:

$$N_m(T) = \begin{cases} 1, & T < T_{m-1} \\ 0, & T > T_m, & m = \overline{1, M}, \end{cases}$$

где $N_m(T)$ — базисные функции, описывающие зависимость падающего теплового потока от времени. В данной работе используются кусочнопостоянные базисные функции, имеющие следующий вид [2–4]:

$$q_{\text{mag}}(T) \approx \sum_{m=1}^{M} q_p N_m(T)$$

Определим количество M временных блоков, в каждом из которых одинаковое число K_m (m = 1, M) шагов τ по времени и на каждом из которых q_p постоянен.

Это количество определим из верхней оценки функциональной невязки:

$$K_m \delta_f^2 \leq \delta_{\text{sum}},$$

где K_m — число узлов с замерами температуры по времени, K_m — число временных слоев в каждом блоке.

Отсюда получаем количество K_m временных шагов τ в каждом *m*-м блоке, m = 1, *M*, для всех характеристик

$$K_m = \frac{\delta_{\text{sum}}}{6\delta_f^2}.$$

Если теперь весь временной промежуток $[0, \tau_{max}]$ разделить на число K_m временных слоев в каждом блоке, получим количество M конечных элементов, а длина ΔT_m каждого конечного элемента m = 1, M равна:

$$\Delta T_m = \frac{T_{\text{max}} - T_{\text{min}}}{M}, \quad m = 1, M,$$
$$M = \frac{\tau_{\text{max}}}{K_m}, \quad m = 1, M.$$

Максимальное значение температуры может быть оценено из следующей постановки задачи [5–8]:

$$C_{\mathrm{p}\phi}(T)\frac{\partial T_{\mathrm{max}}(\tau)}{\partial \tau} = q_{\mathrm{max}}(\tau) - \varepsilon(T)\sigma T_{\mathrm{max}}(l_x,\tau)^4;$$
$$T_{\mathrm{max}}(0) = T_0,$$

а минимальное значение температуры из выражения:

Схематичный вид образца приведен на рисунке 1.

Рассмотрим восстановление теплового потока на основе среднеквадратичного функционала невязки между теоретическим и экспериментальным полем температур [9–13]:

$$S(q_p) = \frac{1}{2} \int_{0}^{\tau_{\max}} \sum_{i=1}^{M} [T(q_p) - \tilde{T}(\overline{x}, \overline{\tau})]^2 d\tau$$

В работе используется метод безусловной минимизации функционала $S(q_p)$ с помощью градиентного метода сопряженных направлений, как наиболее точного метода первого порядка точно-

2022

сти, позволяющего достичь требуемой сходимости за минимальное число итераций.

Последовательный алгоритм метода сопряженных градиентов применительно к определению падающего теплового потока можно представить в следующем виде [12–17]:

$$q_p^{n+1} = q_p^n + \Delta q_p^{n+1}$$

•

где

$$\Delta q_p^{n+1} = -\beta_k p^{(n)}.$$

Направление спуска определяется из:

$$\mathbf{p}^{n} = \operatorname{grad} S(q_{p}^{n}) + \beta_{n} \mathbf{p}^{n-1};$$

$$\beta_{0} = 0, \quad p^{(0)} = \operatorname{grad} S(q_{p}^{0});$$

$$\beta_{n} = \frac{|\operatorname{grad} S(q_{p}^{(n)})|^{2}}{|\operatorname{grad} S(q_{p}^{(n+1)})|^{2}};$$

где δ_{sum} — погрешность входных данных, вычисленная в той же метрике, что и целевой функционал.

$$\delta_{\text{sum}} = \delta_a + \delta_f + \delta_{\text{okp}}, + \delta_x$$

где δ_f – погрешность входных температур, определяемая следующим выражением:

$$\delta_f = \int_0^{\tau_{\max}} \sum_{i=1}^M \delta_L(\tau) d\tau,$$

δ_x – погрешность постановки задачи, определяемая следующими выражением:

$$\delta_{x} = \frac{C(T)\frac{\partial T(x,\tau)}{\partial \tau} - \frac{\partial}{\partial x} \left[\lambda_{\mathrm{s}\phi}(T)\frac{\partial T(x,\tau)}{\partial x}\right] - \frac{\partial q_{_{\mathrm{H}3\Pi}}(x,\tau)}{\partial x}}{\frac{\partial}{\partial x} \left[\lambda_{\mathrm{s}\phi}(T)\frac{\partial T(x,\tau)}{\partial x}\right]}.$$

Как видно из выбранного метода оптимизации первостепенной задачей является отыскание градиента среднеквадратичной интегральной ошибки:

$$\frac{\partial S(q_p^n)}{\partial q_p} = \int_0^{\tau_{\max}} \sum_{i=1}^M [T(q_p^n) - \tilde{T}(\overline{x}, \overline{\tau})] \frac{\partial T(q_p)}{\partial q_p} d\tau.$$

Для нахождения производной температуры по параметризированному значению падающего теплового потока, достаточно продифференцировать основную постановку задачи теплообмена:

$$C_{9\phi}(T)\frac{\partial\theta(x,\tau)}{\partial\tau} = \frac{\partial}{\partial x} \left[\lambda_{9\phi}(T)\frac{\partial\theta(x,\tau)}{\partial x} \right] + \frac{\partial^2 q_{H3\pi}(x,\tau)}{\partial x \partial q_p};$$

$$\frac{\partial^2 q_{H3\pi}(x,\tau)}{\partial x q_p} = \lambda_{9\phi}(T)\frac{\partial\theta(l_x,\tau)}{\partial x} - \sum_{m=1}^M N_m(T)\delta(x,T)n(x),$$

Рис. 1. Схема теплового нагружения объекта испытаний (звездочками схематично изображены места установки термопар).

где

$$\theta(x,\tau) = \frac{\partial T(x,\tau)}{\partial q_p}.$$

Производная от толщины оптического слоя:

$$\frac{\partial \delta(x,T)}{\partial T} = \frac{1}{l_x} \int_0^{l_x} e^{\varepsilon(T)x} \frac{\partial \varepsilon(T)}{\partial T} \theta(x,\tau) x dx.$$

Граничные условия примут следующий вид:

$$\frac{\partial \Theta(0,\tau)}{\partial x} = 0; \quad \frac{\partial \lambda_{2\Phi}(T)}{\partial T} \frac{\partial T(l_x,\tau)}{\partial x} = \sum_{m=1}^{M} N_m(T) - 4\varepsilon(T)\sigma T(l_x,\tau)^3 \Theta(l_x,\tau).$$

Данная постановка задачи решается конечноразностным методом явной схемой, где конечноразностная аппроксимация температур в узлах уже известна из решения "прямой" задачи прогрева.

Для нахождения шага спуска, исходя из метода итерационной регуляризации [9], запишем выражение целевого функционала на следующей итерации:

$$S(q_p^n + \Delta q_p^n) = S(q_p^n) - \alpha_{cn} \left[\frac{\partial S(q_p^n)}{\partial q_p} \right]^2,$$

$$S(q_p^n + \Delta q_p^n) = \frac{1}{2} \sum_{m=1}^{M} \int_{0}^{\tau_{max}} \left[T(q_p^n) - \alpha_{cn} \frac{\partial T(q_p^n)}{\partial q_p} \right]^2 - \tilde{T}(\bar{x}, \bar{\tau})^2 d\tau.$$

Откуда, согласно принципу глобального минимума, необходимо и достаточно приравнять полученное выражение к нулю и выразить шаг спуска. Получим:

$$\alpha_{cn} = \sum_{m=1}^{M} \int_{0}^{\tau_{max}} \frac{T(q_p) - \tilde{T}(\bar{x}, \bar{\tau})}{\frac{\partial T(q_p)}{\partial q_p}} d\tau$$

ВЕСТНИК НАЦИОНАЛЬНОГО ИССЛЕДОВАТЕЛЬСКОГО ЯДЕРНОГО УНИВЕРСИТЕТА "МИФИ" том 11 № 2 2022

Рис. 2. Блок-схема алгоритма идентификации падающего теплового потока.

Таким образом данный алгоритм включает в себя следующую последовательность действий [18]:

1. задание начальных приближений параметрических величин теплофизических параметров;

2. решение "прямой" задачи прогрева конструкции в одномерном приближении, моделируя условия наземной тепловакуумной отработки изделия;

3. получение экспериментального температурного поля изделия в местах установки датчиков температур;

4. составление среднеквадратичной интегральной ошибки между теоретическим и экспериментальным температурным полем в местах установки датчиков температур;

5. решение сопряженной задачи по поиску компоненты градиента целевого функционала невязки между теоретическим и экспериментальным температурным полем;

6. вычисление шага спуска в методе сопряженных направлений на основе метода итерационной регуляризации;

7. получение следующего итерированного приближения падающего теплового удельного потока на поверхность материала;

8. проверка критерия останова итерационного процесса. В случае его выполнения, параметризированные величины считаются искомыми, иначе необходимо повторно выполнить пункты 1–7.

Реализация решения данного алгоритма проиллюстрирована на блок-схеме на рисунке 2.

3. ЧИСЛЕННЫЙ ВИРТУАЛЬНЫЙ ЭКСПЕРИМЕНТ И РЕЗУЛЬТАТЫ РАСЧЕТА

В численном эксперименте рассматривается образец в виде параллелепипеда, по толщине которого установлено 10 термопар. Все его поверх-

Рис. 3. Температурное поле в местах установки датчиков температур.

Рис. 4. Итерационное изменение температурного поля.

Рис. 5. Итерационное изменение среднеквадратичной ошибки между теоретическим и экспериментальным температурным полем в местах установки датчиков температур.

ности теплоизолированные, кроме верхнего основания, на которое падает лучистый интегральный тепловой поток. Таким образом, реализуется одномерный прогрев по толщине материала, моделирующий заданную постановку задачи. В качестве источника теплового потока используется медный линейчатый нагреватель. Результаты определения экспериментального температурного поля в местах замера температур представлены на рисунке 3.

В данной работе целесообразно выбрать два временных блока, характерных для орбитального участка полета. Это временной блок засветки Солнцем поверхности материла и область тени.

При итерационном уточнении параметризированной величины падающего теплового потока, будет также по итерациям восстанавливаться температурное поле, стремясь к своему экспериментальному аналогу. На рисунке 4 приведена зависимость температур в точке замера температур в разные моменты времени в зависимости от номера итерации.

Как видно из рисунка, для итерационной сходимости к своему итерационному постоянному значению необходимо 7 итераций, что говорит об эффективности предложенного метода.

Нагляднее всего процесс сходимости показан по минимизации среднеквадратичного отклонения теоретического температурного поля от экспериментального в местах замера температур. Данный процесс показан на рисунке 5.

БОРЩЕВ

Рис. 6. Итерационное изменение падающего теплового потока в двух временных блоках.

Рис. 7. Изменение расчетных и восстановленных значений тепловых потоков в солнечном и инфракрасном диапазонах.

Итерационные изменения параметризированного значения падающего удельного теплового потока на поверхность материала представлены для каждого из временных блоков на рисунке 6, а его вариация от времени на рисунке 7. Причем, если считать что в области тени на космический аппарат воздействует исключительно инфракрасный земной поток, то легко получить вклад земного и солнечного излучения в интегральную тепловую нагрузку, что видно на рисунке 7.

выводы

 Разработан метод параметрической идентификации падающего теплового потока зеркальных материалов как функций от времени методом итерационной регуляризации в приближении однонаправленного прогрева для орбитального участка полета в условиях высокого вакуума.

2. Продемонстрированы результаты данного алгоритма на примере определения солнечного и инфракрасного излучения элемента зеркальной поверхности космической обсерватории.

3. Результаты показали, что суммарный тепловой поток лежит в пределах от 40 до 50 Вт/м2.

4. Данный алгоритм может быть использован для определения теплового нагружения конструкций в более широком временном и температурном эксплуатационных диапазонах.

СПИСОК ЛИТЕРАТУРЫ

- 1. Залетаев В.М., Капинос Ю.В., Сургучев О.В. Расчет теплообмена космического аппарата. М.: Машиностроение, 1979.
- 2. *Крейн С.Г., Прозоровская О.И*. Аналитические полугруппы и некорректные задачи для эволюционных уравнений // Доклады Академии наук СССР. 1960. Т. 133. № 2. С. 277–280.
- 3. Басистов Ю.А., Яновский Ю.Г. Некорректные задачи в механике (реологии) вязкоупругих сред и их регуляризация // Механика композиционных материалов и конструкций. 2010. Т. 16. № 1. С. 117– 143.
- Бакушинский А.Б., Кокурин М.Ю., Кокурин М.М. Прямые и обратные теоремы для итерационных методов решения нерегулярных операторных уравнений и разностных методов решения некорректных задач Коши // Журнал вычислительной математики и математической физики. 2020. Т. 60. № 6. С. 939–962.
- 5. Фанов В.В., Мартынов М.Б., Карчаев Х.Ж. Летательные аппараты НПО им. С.А. Лавочкина (к 80летию предприятия) // Вестник НПО им. С.А. Лавочкина. 2017. № 2/36. С. 5–16.
- 6. Блох А.Г., Журавлев Ю.А., Рыжков Л.Н. Теплообмен излучением. М.: Энергоатомиздат, 1991.
- Тулин Д.В., Финченко В.С. Теоретико-экспериментальные методы проектирования систем обеспечения теплового режима космических аппаратов, М.: МАИ-ПРИНТ, 2014. Т. 3. С. 1320–1437.
- 8. *Цаплин С.В., Болычев С.А., Романов А.Е.* Теплообмен в космосе. Самара: Изд-во Самарского ун-та, 2013. 53 с.

- 9. Алифанов О.М., Артюхин Е.А., Румянцев С.В. Экстремальные методы решения некорректных задач. М.: Наука. Гл. ред. физ.-мат. лит., 1988. 288 с.
- 10. Алифанов О.М. Обратные задачи теплообмена. М.: Машиностроение, 1988. 280 с.
- 11. Формалев В.Ф. Теплоперенос в анизотропных твердых телах. М.: Физматлит, 2015. 238 с.
- 12. Васин В.В. Модифицированный метод наискорейшего спуска для нелинейных регулярных операторных уравнений // Доклады Академии наук. 2015. Т. 462. № 3. С. 264.
- Голичев И.И. Модифицированный градиентный метод наискорейшего спуска решения нелениаризованной задачи для нестационарных уравнений Навье-Стокса // Уфимский математический журнал, 2013. Т. 5. № 4. С. 60–76.
- 14. Формалев В.Ф., Ревизников Д.Л. Численные методы. М.: Физматлит, 2004. 400 с.
- 15. Формалев В.Ф. Анализ двумерных температурных полей в анизотропных телах с учетом подвижных границ и большой степени анизотропии // Теплофизика высоких температур. 1990. Т. 28. № 4. С. 715–721.
- Формалев В.Ф. Идентификация двумерных тепловых потоков в анизотропных телах сложной формы // Инженерно-физический журнал. 1989. Т. 56. № 3. С. 382–386.
- 17. Формалев В.Ф., Колесник С.А. Аналитическое решение второй начально-краевой задачи анизотропной теплопроводности // Математическое моделирование, 2003. Т. 15. № 6. С. 107–110.
- 18. Борщев Н.О. Методы исследования тепловой модели многоразового элемента конструкции спускаемого космического аппарата с учетом свойства анизотропии: диссертация кандидата технических наук. Москва, 2021. 154 с.

Vestnik Natsional'nogo Issledovatel'skogo Yadernogo Universiteta "MIFI", 2022, vol. 11, no. 2, pp. 101-108

Parametric Identification of the Heat Flow Incident on the Mirror Elements of Space Observatories

N. O. Borshchev^{*a*,#}

^a Astrospace Centre, Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991 Russia [#]e-mail: moriarty93@mail.ru

Received August 6, 2022; revised August 8, 2022; accepted August 9, 2022

Abstract—A method for parametric determination of the incident thermal specific load on the mirror elements of space systems has been proposed. This problem is solved as a problem of finding an extremum between the theoretical and experimental temperature fields in the places where temperature sensors are installed. First, it is necessary to solve the "direct" problem of heat exchange for the test object and set the basic functions describing the shape of the incident thermal flow. The heat exchange process is accompanied by a one-dimensional radiant-conductive heat transfer inside the material. Consequently, in addition to solving the heat equation, it is necessary to solve the equation of radiation transfer inside the mirror element. As boundary conditions, the equality of heat flows is applied: the resulting heat flow on the one hand and zero heat flows to the lower base of the mirror on the other hand since all surfaces except one are thermally insulated for modeling one-dimensional heating. Next, the standard deviation between the experimental and

БОРЩЕВ

theoretical temperature fields is compiled and the resulting functional is minimized. Regularization is used to overcome the inaccuracy due to the inaccuracy of the source data. The iterative regularization method where the regularizing parameter is the iteration number is chosen for the regularization procedure. The conjugate gradient method, as the most accurate method of the first order of convergence is chosen as the optimization algorithm. The results obtained can be used to evaluate the boundary conditions of products for a wide temperature range.

Keywords: inverse heat conduction problem, iterative regularization method, root-mean-square error, temperature field, spacecraft

DOI: 10.56304/S2304487X22020031

REFERENCES

- 1. Zaletaev V.M., Kapinos Yu.V., Surguchev O.V. *Raschet teploobmena kosmicheskogo apparata*. [Calculation of spacecraft heat transfer]. Moscow, Mashinostroenie Publ., 1979.
- Krein S.G., Prozorovskaya O.I. Analiticheskie polugruppy i nekorrektnye zadachi dlya evolyucionnyh uravnenij. [Analytical semigroups and ill-posed problems for evolutionary equations]. *Reports of the Academy of Sciences of the USSR*, 1960, vol. 133, no. 2, pp. 277–280.
- Bassistov Yu.A., Yanovsky Yu.G. Nekorrektnye zadachi v mekhanike (reologii) vyazkouprugih sred i ih regulyari .[Incorrect problems in mechanics (rheology) of viscoelastic media and their regularization]. *Mechanics* of composite materials and structures, 2010. vol. 16, no. 1, pp. 117–143.
- 4. Bakushinsky A.B., Kokurin M.Yu., Kokurin M.M. Pryamye i obratnye teoremy dlya iteracionnyh metodov resheniya neregulyarnyh operatornyh uravnenij i raznostnyh metodov resheniya nekorrektnyh zadach Koshi. [Direct and inverse theorems for iterative methods for solving irregular operator equations and difference methods for solving ill-posed Cauchy problems]. Journal of Computational Mathematics and Mathematical Physic, 2020, vol. 60, no. 6, pp. 939–962.
- Fanov V.V., Martynov M.B., Karchaev H.Zh. Aircraft of S.A. Lavochkin NPO (to the 80th anniversary of the enterprise). *Bulletin of NPO named after S.A., Lavochkin*, 2017, no. 2/36, pp. 5–16.
- Bloch A.G., Zhuravlev Yu.A., Ryzhkov L. N. *Teploobmen izlucheniem*. [Heat exchange by radiation]. Moscow, Energoatomizdat Publ., 1991.
- 7. Tulin D.V., Finchenko V.S. Theoretical and experimental methods of designing systems for ensuring the thermal regime of space apparatuses. Moscow, *MAI-PRINT*, 2014, vol. 3, pp. 1320–1437.
- 8. Tsaplin S.V., Bolychev S.A., Romanov A.E. *Teploobmen v kosmose*. [Heat exchange in space]. Samara University Publ., 2013, 53 p.
- Alifanov O.M., Artyukhin E.A., Rumyantsev S.V. *Ekstremal'nye metody resheniya nekorrektnyh zadach*. [Extreme methods for solving incorrect problems]. Moscow, Nauka. Gl. ed. phys.-mat. lit. Publ., 1988, 288 p.
- Alifanov O.M. *Obratnye zadachi teploobmena*.[Inverse problems of heat transfer. Moscow]. Mechanical Engineering Publ., 1988, 280 p.

- Formalev V.F. *Teploperenos v anizotropnyh tverdyh telah*. [Heat transfer in anisotropic solids]. Moscow, Fizmatlit Publ., 2015, 238 p.
- Vasin V.V. Modificirovannyj metod naiskorejshego spuska dlya nelinejnyh regulyarnyh operatornyh uravnenij. [Modified steepest descent method for nonlinear regular operator equations]. *Reports of the Academy of Sciences*, 2015, vol. 462. no. 3, pp. 264.
- Golichev I.I. Modificirovannyj gradientnyj metod naiskorejshego spuska resheniya neleniarizovannoj zadachi dlya nestacionarnyh uravnenij Nav'e–Stoksa. [Modified gradient method of the steepest descent of the solution of the non-leniarized problem for non-stationary Navier–Stokes equations]. *Ufa Mathematical Journal*, 2013, vol. 5, no. 4, pp. 60–76.
- Formalev V.F., Reviznikov D.L. *Chislennye metody*. [Numerical methods]. Moscow, Fizmatlit Publ., 2004, 400 p.
- 15. Formalev V.F. Analiz dvumernyh temperaturnyh polej v anizotropnyh telah s uchetom podvizhnyh granic i bol'shoj stepeni anizotropii. [Analysis of two-dimensional temperature fields in anisotropic bodies taking into account moving boundaries and a large degree of anisotropy]. *Thermophysics of high temperatures*, 1990, vol. 28, no. 4, pp. 715–721.
- Formalev V.F. Identifikaciya dvumernyh teplovyh potokov v anizotropnyh telah slozhnoj formy [Identification of two-dimensional heat flows in anisotropic bodies of complex shape]. *Engineering and Physics journal*, 1989, vol. 56, no. 3, pp. 382–386.
- Formalev V.F., Kolesnik S.A. Analiticheskoe reshenie vtoroj nachal'no-kraevoj zadachi anizotropnoj teploprovodnosti. [Analytical solution of the second initial boundary value problem of anisotropic thermal conductivity]. *Mathematical modeling*. 2003, vol. 15, no. 6, pp. 107–110.
- 18. Borshchev N.O. Metody issledovaniya teplovoj modeli mnogorazovogo elementa konstrukcii spuskaemogo kosmicheskogo apparata s uchetom svojstva anizotropii. Diss. kand. tekhn. nauk. [Methods for studying the thermal model of a reusable structural element of a descent space vehicle, taking into account the property of anisotropy. Diss. of a cand. of techn. Sciences]. Moscow, 2021, 154 p.

108