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Рассматривается один из классов нелинейных обыкновенных дифференциальных уравнений вто-
рого порядка. Предлагается алгоритм построения первых интегралов рассматриваемого класса
уравнений. Для поиска аналитических решений уравнений данного класса, как правило, использу-
ются специальные подходы типа метода простейших уравнений. Предлагаемый алгоритм позволяет
в ряде случаев находить общие решения нелинейных дифференциальных уравнений. Применение
алгоритма иллюстрируется на примере комплексного уравненния Гинзбурга–Ландау, решение ко-
торого ищется используя переменные бегущей волны. Показано, что нелинейное обыкновенное
дифференциальное уравение второго порядка достаточно сложного вида, с помощью предлагаемо-
го алгоритма можно свести к дифференцильному уравнению первого порядка, решение которого в
общем виде можно представить в виде квадратуры. При нулевых значениях постоянных интегриро-
вания, точные решения уравнения Гинзбурга–Ландау получены в виде аналитических выражени-
ий. Представлены точные решения уравнения Гинзбурга–Ландау в виде периодических и уединен-
ных волн, которые выражаются через эллиптические и гиперболические функции.
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1. ВВЕДЕНИЕ
В данной работе рассматривается класс обык-

новенных нелинейных дифференциальных урав-
нений в виде

(1)

где зависимость  является полиномом от .
Этот тип нелинейных дифференциальных

уравнений часто встречается при исследовании
нелинейных уравнений математической физики,
если использовать переменные бегущей волны.

В частности, если искать решения обобщенно-
го уравнения Гинзбурга–Ландау

(2)

где  – комплексная функция от  и ,  –
действительное число, , , , , , ,  и  – па-
раметры математической модели.

Уравнение Гинзбурга–Ландау – одно из попу-
лярных дифференциальных уравнений теорети-
ческой физики. Это объясняется тем, что это
уравнение встречается при описании ряда физи-
ческих процессов в нелинейной оптике, физике
жидкостей, теории сверхпроводимости и физике
плазмы [1–17].

Можно заметить, что уравнение (1) при
 и  является хорошо известным

уравнением Гинзбурга–Ландау. В случае  =
= γ = 0 уравнение (1) изучалось в ряде других ра-
бот [18–25]. Таким образом, уравнение (1) –
обобщение двух хорошо известных нелинейных
дифференциальных уравнений.

Полагая в (2)

(3)

получаем обыкновенное дифференциальное
уравнение
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(4)

В данной работе показано, что нелинейное обык-
новенное дифференциальное уравнение (4) име-
ет точные решения в виде периодических и уеди-
ненных волн без каких-либо ограничений на па-
раметры математической модели.

2. МЕТОД ПОСТРОЕНИЯ ПЕРВЫХ 
ИНТЕГРАЛОВ УРАВНЕНИЯ (1)

Заметим, что умножив все члены уравнения на
, где

(5)

уравнение (1) можно записать в виде

(6)

Справедливость формулы (6) проверяется непо-
средственно вычислением производной в левой
части уравнения.

Умножая обе части уравнения (6) на выраже-

ние , уравнение (6) после инегрирования,

можно записать в виде

(7)

где  – постоянная интегрирования.
Левую часть уравнения (7) можно записать в виде

(8)

С учетом (8) уравнение (7) можно записать так

(9)

Окончательно уравнение (9) можно записать
в виде

(10)

Принимая во внимание, что  является поли-
номом от , интеграл в правой части (7) вычисля-
ется и уравнение (10) является первым интегра-
лом исходного уравнения (1).

3. ПЕРВЫЙ ИНТЕГРАЛ УРАВНЕНИЯ (4)
Продемонстрируем применение метода, кото-

рый представлен выше, для поиска первых инте-
гралов нелинейного дифференциального уравне-
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ния (4). Умножая все члены уравнения (4) на дей-
ствительную функцию , где  имеет вид

(11)

уравнение (4) можно представить в виде

(12)

Первый интеграл уравнения (12) имеет вид

(13)

где  – постоянная интегрирования.

Окончательно уравнение (13) может быть
представлено как нелинейное дифференциаль-
ное уравнение первого порядка

(14)

при выполнении следующего условия

(15)

Поэтому проблема нахождения точных решений
нелинейного дифференциального уравнения (1)
сводится к решению уравнения (14).

Запишем уравнение (14) в виде

(16)
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(17)

Таким образом, уравнение (16) может быть ис-
пользовано для нахождения точных решений
уравнения Гинзбурга–Ландау при учете перемен-
ных бегущей волны.

Заметим, что уравнение (14) может быть запи-
сано в виде интеграла

(18)

где  – произвольная постоянная и  – функ-
ция от  в виде

(19)

Интеграл (18) в общем случае не вычисляется.
Однако, решение уравнения (14) может быть по-
лучено при  для различных значений пара-
метров уравнения (2).

4. ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ 
УРАВНЕНИЯ (2), ВЫРАЖЕННЫЕ ЧЕРЕЗ 
ЭЛЛИПТИЧЕСКУЮ ФУНКЦИЮ ЯКОБИ
Используя первый интеграл уравнения (2)

найдем периодические и уединенные волны
уравнения (14) при . Можно указать не-
сколько случаев, когда уравнение (14) может быть
преобразовано к виду, имеющему решение, выра-
женное через эллиптическую функцию Якоби.
В первом случае при  и  уравнение (16)
запишется в виде [18]

(20)

Используя в уравнении (20) новую перемен-
ную [26]

(21)

имеем уравнение в виде

(22)

Общее решение уравнения (22) выражается че-
рез эллиптическую функцию. Например ис-
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пользуя эллиптический синус, получаем реше-
ние [27–29]

(23)

где , ,  и  являются действительными кор-
нями следующего алгебраического уравнения

(24)

Функция  выражается через эллиптический
синус

(25)

где  – постоянная интегрирования.
Решение (23) является периодической волной

описываемой уравнением (16) при  и
.

Принимая во внимание решения (3), (21) и
(23), получаем решение уравнения (2) в виде

(26)

где , , ,  – корни уравнения  (24),  – про-
извольная постоянная и  определяется
выражением (25).

5. УЕДИНЕННЫЕ ВОЛНЫ УРАВНЕНИЯ (2)

В случае  имеем , эллиптический
синус вырождается в гиперболический тангенс.
При этом решение уравнения (22) имеем в виде
[27–29]

(27)

где  определяется формулой

(28)
Оптический солитон уравнения (2) может быть
записан в виде

(29)

где  – произвольная постоянная.
Решение (29) соответствует светлому и темно-

му оптическим солитонам уравнения (2).
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Полагая  в уравнение (2), получаем урав-
нение Гинзбурга–Ландау с антикубическим по-
казателем преломления

(30)

В этом случае имеем . Один из корней урав-
нения (24) равен нулю и решение уравнения (30)
выражается формулами (26) и (29).

6. ТОЧНЫЕ РЕШЕНИЯ УРАВНЕНИЯ (2) 
ПРИ  И 

Полагая  и  в уравнении (2), имеем
. Уравнение Гинзбрга–Ландау (1) в

этом случае принимает вид

(31)

Нелинейное уравнение (22) в этом случае за-
пишется в виде

(32)

Решение уравнения (32) в этом случае имеет
вид оптических солитонов в виде [30–36]

(33)

где  – произвольная постоянная.
Принимая во внимание решения (33), (21) и (3),

получаем выражение для оптического солитона
уравнения (31) в виде

(34)

При , ,  уравнение (2) сов-

падает с уравнением (31). В случае , ,
, уравнение (32) может быть записано как

следующее

(35)

Решение уравнения (35) в виде уединенной вол-
ны принимает вид

(36)

В этом случае оптический солитон описываемый
уравнением (31) запишется в виде

(37)

где  – произвольная постоянная.

7. РЕШЕНИЯ УРАВНЕНИЯ (2) ПРИ , 
 И 

В случае ,  и , получаем хорошо
известное уравнение Гинзбурга–Ландау в виде

(38)

Точные решения этого уравнения были получены
в целом ряде работ [8–17]) при некоторых ограни-
чениях на значения параметров математической
модели (31).

Полагая ,  и  в уравнении (38),
получаем , ,  в уравнении (16)
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используя новую переменную
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Решение  уравнения (38) в этом случае
можно записать в следующем виде

(43)

где  является, как обычно произвольной посто-
янной.

Точные решения уравнения (38) находятся
также рпри  и .

8. ЗАКЛЮЧЕНИЕ
В данной работе мы рассмотрели применение

метода построения первых интегралов на приме-
ре обобщенного уравнения Гинзбурга–Ландау,
имеющего четыре степени нелинейности. Основ-
ной целью статьи было представить метод по-
строения первых интегралов нелинейных диффе-
ренциальных уравнений определенного типа.
Уравнение в частных производных Гинзбурга–
Ландау не имеет пары Лакса и задача Коши для
него не решается методом обратной задачи рассе-
яния. Поэтому точные решения уравнения полу-
чены используя переменные бегущей волны.
Найдены периодические и уединенные волновые
решения обобщенного уравнения Гинзбурга–
Ландау.
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Abstract—An algorithm for constructing the first integrals of one class of nonlinear ordinary differential
equations of the second order is proposed. Special approaches such as the simplest equation method are usu-
ally used to find analytical solutions of these equations. The proposed algorithm makes it possible to find gen-
eral solutions of nonlinear differential equations in some cases. The algorithm is illustrated in application to
the complex Ginzburg–Landau equation. The solution of this equation is sought using traveling wave vari-
ables. It is shown that the proposed algorithm allows one to reduce a rather complex nonlinear ordinary dif-
ferential equation of the second order to a first order differential equation, the general solution of which can
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be represented as a quadrature. With some restrictions on the arbitrary constants, the solution of the Ginz-
burg–Landau equation can be presented in the form of an analytical expression.

Keywords: nonlinear differential equation, first integral, general solution, Ginzburg–Landau equation, ana-
lytical solution
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