ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ _____ И ДИНАМИЧЕСКИЕ СИСТЕМЫ

УЛК 517.51

ПРИМЕР НЕПРЕРЫВНОЙ НИГДЕ НЕ ДИФФЕРЕНЦИРУЕМОЙ ФУНКЦИИ С МОДУЛЕМ НЕПРЕРЫВНОСТИ, НЕ ПРЕВОСХОДЯЩИМ ДАННОГО

© 2022 г. Д. С. Теляковский^{1,*}

 1 Национальный исследовательский ядерный университет "МИФИ", Москва, 115409, Россия

*e-mail: dtelyakov@mail.ru

Поступила в редакцию 31.07.2022 г. После доработки 18.09.2022 г. Принята к публикации 27.09.2022 г.

Для произвольного выпуклого вверх нелипшицева модуля непрерывности $\omega(t)$ построена непрерывная нигде не дифференцируемая функция $\phi_{\omega}(x)$, модуль непрерывности которой не превосходит $\omega(t)$ и которая в каждой точке имеет нулевое производное число. Построение следует конструкции непрерывной нигде не дифференцируемой функции, данной Б. Больцано. Если положить $f_{\omega}(z) = f_{\omega}(x+iy) := \phi_{\omega}(x)$, то $f_{\omega}(z)$ дает пример непрерывной нигде не дифференцируемой функции (даже если рассматривать $f_{\omega}(z)$ как функцию двух действительных переменных), модуль непрерывности которой не превосходит $\omega(t)$ и которая в каждой точке имеет нулевое производное число вдоль двух неколлинеарных направлений. Автором было получено достаточное условие голоморфности, в котором вместо предположения о существовании у f(z) в точках ζ области производной по z вдоль множества E_{ζ} определенного вида выполнение в точках ζ условия Липшица вдоль E_{ζ} . Пример функции $f_{\omega}(z)$ показывает, что в этой теореме условие Липшица ослабить нельзя.

Ключевые слова: модуль непрерывности, нигде не дифференцируемая функция, производное число **DOI:** 10.56304/S2304487X22030117

Пусть $\omega(t)$, $t \in [0;1]$, модуль непрерывности (в пространстве непрерывных функций), т.е.:

$$0 = \omega(0) < h(t) \quad \text{при} \quad t > 0;$$

$$\omega(t_1) \leq \omega(t_2), \quad \text{и} \quad \omega(t_1 + t_2) \leq \omega(t_1) + \omega(t_2)$$
 при любых $0 < t_1 < t_2, \quad t_1 + t_2 \leq 1.$

Модуль непрерывности будем называть нелипшицевым, если выполнено условие

$$\lim_{t\to +0}\frac{\omega(t)}{t}=+\infty.$$

Как показал С.Б. Стечкин¹, для любого модуля непрерывности $\omega(t)$ существует выпуклый вверх модуль непрерывности $\hat{\omega}(t)$ удовлетворяющий неравенствам $\omega(t) \leq \hat{\omega}(t) \leq 2\omega(t)$. Поэтому, не ограничивая общности, модуль непрерывности $\omega(t)$ можно считать выпуклым вверх.

Если функция f(x) удовлетворяет условию Липшица, то f(x) дифференцируема почти всюду и даже восстанавливается как интеграл от своей

производной. При этом условие Липшица здесь ослабить нельзя. То есть если только модуль непрерывности функции f(x) нелипшицев, то f(x) может не быть дифференцируема ни в одной точке. Примеры нигде не дифференцируемых функций с гёльдеровым модулем непрерывности произвольного порядка $\alpha \in (0;1)$, были даны В.С. Лаудом (1951, [2]) и И. Марксом и Г. Пираняном (1953, [3]). А.И. Рубинштейн (1964, [4]) построил пример нигде не дифференцируемой функции с модулем непрерывности, не превосходящим произвольного нелипшицевого $\alpha(t)$. В настоящей работе построен следующий пример непрерывной нигде не дифференцируемой функции.

Теорема. Для произвольного выпуклого вверх нелипшицевого модуля непрерывности $\omega(t)$, $t \in [0;1]$, существует непрерывная нигде не дифференцируемая функция $\phi_{\omega}(x)$, $x \in [0;1]$, для которого выполнены условия:

1) в любой близости от каждой точки $x \in [0;1]$ найдется точка $x' \neq x$, $x' \in [0;1]$, в которой $\varphi_{\omega}(x') = \varphi_{\omega}(x)$;

¹ Лемма С.Б. Стечкина с согласия ее автора была впервые опубликована в работе А.В. Ефимова [1], лемма 4. С. 78.

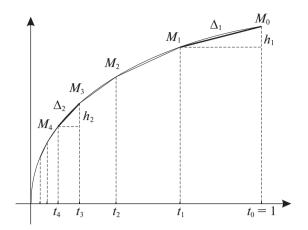


Рис. 1. Вписанная в график модуля непрерывности ломаная \mathcal{L} , выбор звеньев Δ_k .

2) модуль непрерывности функции $\phi_{\omega}(x)$ не превосходит $\omega(t)$.

Заметим, что из свойства 1) следует, что в каждой точке отрезка [0;1] функция $\phi_{\omega}(x)$ имеет нулевое производное число. Существование нулевого производного числа использовано для построения примера, показывающего невозможность ослабления условия Липшица в достаточном условии голоморфности из работы автора [5]. Для построенной в работе А.И. Рубиштейна [4] функции $f_{\omega}(x)$ было установлено выполнение условия, более слабого, чем существование нулевого производного числа, причем не всюду, а почти всюду.

Введем некоторые обозначения и определения. Если S отрезок, то через R(S) будем обозначать прямоугольник с диагональю S и сторонами, параллельными осям координат. Длину проекции отрезка или прямоугольника на ось Ox будем называть uupuhoù этого отрезка или прямоугольника, а на ось Oy - высотой этого отрезка или прямоугольника.

Доказательство теоремы проведем за несколько шагов.

1. Построение функции $\phi_{\omega}(x)$ и доказательство ее непрерывности. Функция $\phi_{\omega}(x)$ будет получена как предел равномерно сходящейся последовательности кусочно-линейных непрерывных функций $\{\phi_n(x)\}^2$.

Возьмем произвольную, строго убывающую к нулю последовательность положительных чисел $\{t_j\}$, $j \in \mathbb{N}_0$, $t_0 = 1$. Эта последовательность определяет вписанную в график функции $\omega(t)$ ломаную

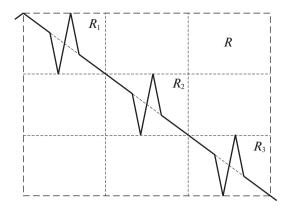


Рис. 2. Преобразование звена ломаной L_n при переходе к L_{n+1} .

линию \mathcal{L} с вершинами в точках $M_j = M_j(t_j, \omega(t_j))$. Так как модуль непрерывности $\omega(t)$ нелипшицев и выпукл вверх, то у звеньев $[M_j, M_{j+1}]$ их угловые

коэффициенты
$$k_j := \frac{\omega(t_j) - \omega(t_{j+1})}{t_j - t_{j+1}} \nearrow +\infty$$
.

Выберем последовательность отрезков $\Delta_n := [M_{j_n}, M_{j_n+1}]$ для угловых коэффициентов которых выполнено неравенство $k_{j_{n+1}} \geqslant 10k_{j_n}$, в качестве Δ_1 возьмем отрезок $[M_0, M_1]$. Чтобы не писать двойные индексы, угловой коэффициент отрезка Δ_n будем обозначать k_n . Длину отрезка Δ_n будем обозначать $|\Delta_n|$, а его высоту — h_n (рис. 1).

Построение функций $\varphi_n(x)$, будет определено через построение их графиков L_n , которые являются ломаными с конечным числом звеньев, причем угловые коэффициенты звеньев ломаной L_n принимают значения $\pm k_p$ при $p=1,\ldots,n$.

Ломаные L_n определим по индукции. В качестве L_1 возьмем отрезок прямой $y=k_1x$, $x\in[0;1]$. Предположим, что ломаная L_n построена и по L_n построим ломаную L_{n+1} . Для этого некоторые части каждого звена ломаной L_n заменим трехзвенными ломаными — зигзагами угловые, коэффициенты звеньев которых равны $\pm k_{n+1}$ (рис. 2). В пределах одного звена L_n зигзаги будут одинаковыми, для разных звеньев L_n замена будет проводиться независимо от других звеньев, поэтому и число зигзагов и их размеры для каждого звена L_n будут, вообще говоря, разными.

Пусть S — произвольное звено ломаной L_n . Определим преобразование S при построении ломаной L_{n+1} . По построению у ломаной L_n нет горизонтальных звеньев, поэтому прямоугольник R = R(S) с диагональю S не вырождается в отрезок. Высота прямоугольника R равна высоте h_S его

² Построение аналогично построению функции Б. Больцано – первого примера непрерывной нигде не дифференцируемой функции (около 1830 г.), про функцию Больцано и ее историю см. работу [6] В.Ф. Бржечки.

диагонали S . Разобъем отрезок S на $m:=\left\lfloor\frac{h_S}{h_{n+1}/6}\right\rfloor+1$ равных частей $S_i, i=1,\ldots,m$ (напомним, что h_{n+1} — высота звена Δ_{n+1} , на рис. 2 значение m равно 3), и построим прямоугольники $R_i=R(S_i)$. По определению числа m высота каждого прямоугольника R_i меньше $h_{n+1}/6$, причем какое бы звено S ломаной L_n ни рассматривалось.

Пусть R' — один из прямоугольников R_i с диагональю S' = [A'; D']. Определим как преобразуется при переходе к L_{n+1} отрезок S' — часть ломаной L_n лежащая в прямоугольнике R'. Через середину S' проведем отрезок $\ell^{(2)}$, соединяющий верхнее и нижнее основания прямоугольника R', угловой коэффициент $k^{(2)}$ которого по модулю равен угловому коэффициенту k_{n+1} (k_{n+1} — угловой коэффициент звена Δ_{n+1} ломаной линии \mathcal{L}), а знак противоположен знаку углового коэффициента отрезка S'. Из точек B' и C' пересечения отрезка $\ell^{(2)}$ соответственно с нижним и верхним основаниями прямоугольника R' проведем отрезки $\ell^{(1)}$ и $\ell^{(3)}$ с угловыми коэффициентами равными $-k^{(2)}$ до пересечения с S' в точках A'' и D''.

В качестве части ломаной L_{n+1} , лежащей в прямоугольнике R' возьмем ломаную A'A''B'C'D''D' (рис. 3). Трехзвенную ломаную A''B'C'D'' будем называть зигзагом Z', индексация зигзага соответствует индексации прямоугольника R' (или его диагонали S').

Аналогично определим части ломаной L_{n+1} , лежащие в остальных прямоугольниках R_i , $i=1,\ldots,m$ (рис. 2), и повторим это построение для всех звеньев ломаной L_n . Будем считать, что части звена $S \subset L_n$, входящие в ломаную L_{n+1} и лежащие в разных прямоугольниках R_i , являются разными звеньями ломаной L_{n+1} , даже если они образуют один отрезок. При этом условии все вершины любой ломаной L_n являются также вершинами ломаных L_m при каждом m > n и высота как любого звена ломаной L_n , так и соответствующего прямоугольника меньше $h_n/6$.

Пусть $R_{n,j}$ — произвольным образом занумерованные прямоугольники со сторонами, параллельными осям координат, диагоналями которых являются звенья ломаной L_n . По построению при каждом номере $m \ge n$ выполнено включение $L_m \subset \bigcup_j R_{n,j}$. Поэтому, поскольку высота каждого

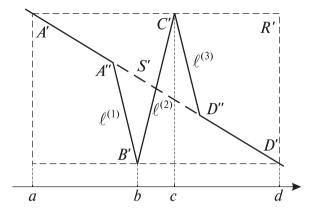


Рис. 3. Построение зигзага Z в прямоугольнике R'. Модули угловых коэффициентов звеньев $\ell^{(1)}$, $\ell^{(2)}$, $\ell^{(3)}$ зигзага Z по крайней в десять раз больше модуля углового коэффициента диагонали S' прямоугольника R'. Поэтому зигзаг Z' целиком лежит в R'.

прямоугольника $R_{n,j}$ меньше $h_n/6$, то при каждом номере $p,q\geqslant n$ выполнено неравенство

$$|\varphi_p(x) - \varphi_q(x)| \le \frac{h_n}{6}$$
 при $x \in [0; 1]$.

Так как $h_n \to 0$ при $n \to \infty$, то последовательность непрерывных функций $\{\phi_n(x)\}$ равномерно сходится к непрерывной функции, которую обозначим $\phi_{\omega}(x)$.

При таком определении функции $\phi_{\omega}(x)$ из того, что при всех номерах m, n, $m \ge n$, выполнено включение $L_m \subset \bigcup_j R_{n,j}$ следует, что при каждом n график функции $\phi_{\omega}(x)$ лежит в объединении $\bigcup_j R_{n,j}$, а из того, что все вершины каждой ломаной L_n являются вершинами ломаных L_m с большими номерами, следует, что график функции $\phi_{\omega}(x)$ проходит через все вершины каждой ломаной L_n .

2. Проверим теперь, что функция $\phi_{\omega}(x)$ нигде не дифференцируема и в произвольной проколотой окрестности каждой точки $x \in [0;1]$ найдется точка $x' \in [0;1]$, в которой $\phi_{\omega}(x') = \phi_{\omega}(x)$.

Для этого достаточно показать, что для каждой точки $x \in [0;1]$ при любом $\delta > 0$ на отрезке [0;1] найдутся точки x' и x'', лежащие от x на расстоянии меньше δ , в которых

$$\varphi_{\omega}(x') = \varphi_{\omega}(x), \quad \left| \frac{\varphi_{\omega}(x'') - \varphi_{\omega}(x)}{x'' - x} \right| \geqslant k_1 > 0. \quad (1)$$

Из первого соотношения (1) следует, что в каждой точке отрезка [0;1] функция $\phi_{\omega}(x)$ имеет нулевое производное число.

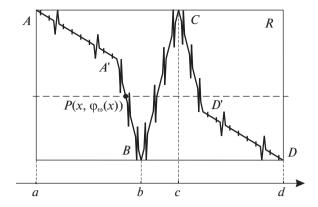


Рис. 4. Изображение лежащих в прямоугольнике R частей ломаных L_{n+1} , L_{n+2} , L_{n+3} (ломаная L_{n+3} изображена там, где она не сливается с L_{n+2}); частью ломаной L_n , лежащей в R, является отрезок [A; D]. Показано нахождение точки $x' \in [c;d]$ в которой $\varphi_{\omega}(x) = \varphi_{\omega}(x')$.

Напомним, что график функции $\phi_{\omega}(x)$ при каждом номере n лежит в объединении прямоугольников $\bigcup_j R_{n,j}$ и проходит через все вершины ломаной L_n .

У каждого прямоугольника $R_{n,j}$ его высота меньше $h_n/6$, а угловой коэффициент его диагонали по модулю не меньше k_1 . Так как $h_n \to 0$, то максимальная ширина прямоугольников $R_{n,j}$ стремится к нулю при $n \to \infty$. Пусть у ломаной L_n максимальная ширина прямоугольников $R_{n,j}$ меньше δ . Обозначим R прямоугольник из набора $\{R_{n,j}\}$, которому принадлежит точка $(x, \varphi_{\omega}(x))$, а [a;d] — отрезок оси Ox, на который проектируется R. Покажем, что на отрезке [a;d] найдутся точки x' и x", в которых выполнены соотношения (1) (рис. 4 и 5).

По построению ломаная L_{n+1} проходит через две диаметрально противоположные вершины прямоугольника R и содержит три куска AA'B, BC и CD'D, соединяющие верхние и нижние основания прямоугольника R (рис. 4). Значит, график непрерывной функции $\phi_{\omega}(x)$ на каждом из отрезков [a;b], [b;c] и [c;d] соединяет верхнее и нижнее основания прямоугольника R. Поэтому, если точка $(x,\phi_{\omega}(x))$ лежит на верхнем или нижнем основании R, то функция ϕ_{ω} принимает значение $\phi_{\omega}(x)$ не менее чем в двух точках отрезка [a;d], а если точка $(x,\phi_{\omega}(x))$ не лежит на верхнем или нижнем основании R, то функция ϕ_{ω} принимает значение $\phi_{\omega}(x)$ не менее чем в трех точках [a;d] (на самом деле таких точек больше). В любом случае,

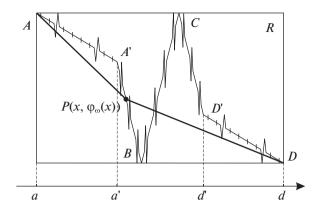


Рис. 5. Нахождение точки $x'' \in [c;d]$ в которой модуль разностного отношения большой.

где бы не находилась точка $x \in [a;d]$, функция ϕ_{ω} принимает значение $\phi_{\omega}(x)$ по крайней мере в одной точке отрезка [a;d], которая не совпадает с точкой x. Эту точку возьмем в качестве x'.

Если точка x является одним из концов отрезка [a;d], то в качестве точки x" возьмем другой конец этого отрезка. Тогда величина

$$\left|\frac{\varphi_{\omega}(x'') - \varphi_{\omega}(x)}{x'' - x}\right| = \left|\frac{\varphi_{\omega}(d) - \varphi_{\omega}(a)}{d - a}\right| = k_j \geqslant k_1.$$

Здесь j — номер шага при котором был добавлен зигзаг (уровня j), частью которого является отрезок S. Если точка x не является концом отрезка [a;d], то в качестве x" возьмем ту из точек a или d,

для которой величина
$$\frac{|\phi_{\omega}(x'') - \phi_{\omega}(x)|}{x'' - x}$$
 больше

(рис. 5); если точка $(x, \phi_{\omega}(x))$ лежит на диагонали [A; D] прямоугольника R, то в качестве x" можно взять любую из точек a или d.

При любом описанном выборе точки x' значение величины $\left| \frac{\phi_{\omega}(x'') - \phi_{\omega}(x)}{x'' - x} \right|$ не меньше модуля углового коэффициента диагонали S, равного $k_i \geq k_1$.

Если точка $P(x, \varphi_{\omega}(x))$ не лежит на диагонали [A; D] прямоугольника R, то у одного из отрезков [A; P] и [P; D] модуль углового коэффициента больше модуля углового коэффициента отрезка [A; D]. В изображенном на рис. 5 случае в качестве x" будет взята точка a.

3. Теперь покажем, что модуль непрерывности функции $\phi_{\omega}(x)$ не превосходит $\omega(t)$.

Возьмем произвольные точки x' и x'' отрезка [0;1], для определенности пусть x' < x''. Чтобы

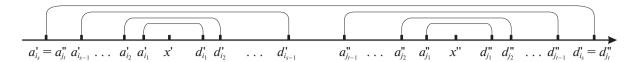


Рис. 6. Опорные отрезки зигзагов, содержащие точки x' и x''.

оценить величину $|\phi_{\omega}(x'') - \phi_{\omega}(x')|$ оценим при произвольном n величину $|\phi_n(x'') - \phi_n(x')|$. Оценка приращения функции $\phi_{\omega}(x)$ будет получена из оценки приращения $\phi_n(x)$ при $n \to \infty$.

Введем некоторые дополнительные определения и обозначения. Зигзаг, который был построен на части звена ломаной L_{n-1} , $n \ge 2$, при построении ломаной L_n будем называть зигзагом уровня n. Для единообразия обозначений ломаную L_1 будем называть зигзагом уровня 1, хотя L_1 является отрезком, а не зигзагом. Зигзаги уровня n будем обозначать $Z_{n,j}$, порядок в котором они занумерованы (т.е. номера j) значения не имеет. Отрезок оси Ox, над которым расположен зигзаг $Z_{n,j}$ будем называть *опорным отрезком* зигзага $Z_{n,j}$ и обозначать $[a_{n,j};d_{n,j}]$. На рис. 5 опорным отрезком зигзага Z = A'BCD' является отрезок [a';d'].

Средний отрезок каждого зигзага $Z_{n,j}$ длиннее каждого из остальных двух отрезков зигзага, его высота равна высоте прямоугольника $R_{n,j}$ и поэтому не превосходит 1/6 высоты h_n соответствующего звена Δ_n ломаной линии $\mathcal L$. Поэтому, поскольку угловые коэффициенты отрезков, составляющих зигзаг $Z_{n,j}$, по модулю равны угловому коэффициенту отрезка Δ_n , то длина опорного отрезка зигзага $Z_{n,j}$ меньше половины ширины Δ_n .

По построению ломаных L_n опорные отрезки разных зигзагов одного уровня не пересекаются, а опорные отрезки зигзагов разных уровней либо не пересекаются, либо опорный отрезок зигзага с большим номером уровня целиком лежит внутри опорного отрезка зигзага с меньшим номером уровня. Каждая точка $x \in [0;1]$ принадлежит некоторому набору опорных отрезков

$$x \in [a_{p_1,j_1};d_{p_1,j_1}] \subset [a_{p_2,j_2};d_{p_2,j_2}] \subset ... \subset \subset [a_i;d_1] = [0;1], \quad n \ge p_1 > p_2 > ... > 1.$$

В этом наборе не обязательно есть опорные отрезки каждого уровня от 1 до n, но обязательно есть опорный отрезок 1 уровня, это отрезок [0;1].

Для точек x' и x'' соответствующие опорные отрезки обозначим $[a_i';d_i']$ и $[a_j'';d_j'']$, здесь $i=1,\ldots,p$ и $j=1,\ldots,q$ — некоторые номера от 1 до n, номера уровней i и j могут не совпадать, количество отрезков в наборах $\{[a_i';d_i'']\}$ и $\{[a_j'';d_j''']\}$ может быть разным. Имеем

$$x' \in [a'_{i_1}; d'_{i_1}] \subset [a'_{i_2}; d'_{i_2}] \dots \subset [a'_{i_p}; d'_{i_p}] = [0;1],$$

$$x'' \in [a_{j_1}''; d_{j_1}''] \subset [a_{j_2}''; d_{j_2}''] \dots \subset [a_{j_a}''; d_{j_a}''] = [0; 1],$$

Начиная с некоторого номера, наборы $\{[a_i';d_i']\}$ и $\{[a_j'';d_j'']\}$ содержат одни и те же отрезки. Пусть $[a_{i_s}';d_{i_s}']$ и $[a_{j_t}'';d_{j_t}'']$ — первые совпадающие отрезки этих наборов, быть может, $[a_{i_s}';d_{i_s}']=[a_{j_s}'';d_{j_t}'']=[0;1]$

$$[a'_{i_1}; d'_{i_1}] \subset \ldots \subset [a'_{i_s}; d'_{i_s}] = [a''_{j_t}; d''_{j_t}] \supset \ldots \supset [a''_{j_1}; d''_{j_1}].$$
 (2)

Для концов опорных отрезков $[a_i'; d_i']$ и $[a_j''; d_j'']$ выполнены неравенства (рис. 6, масштаб на рисунке не соблюден)

$$x' \le d'_{i_1} \le d'_{i_2} \le \dots \le d'_{i_{s-1}} \le a''_{i_{t-1}} \le \dots \le$$

$$< a''_{i_2} \le a''_{i_1} \le x''.$$

Теперь оценим приращение $|\phi_n(x'') - \phi_n(x')|$. Имеем

$$\begin{aligned} |\varphi_{n}(x'') - \varphi_{n}(x')| &\leq |\varphi_{n}(x'') - \varphi_{n}(a_{j_{1}}'')| + \\ + |\varphi_{n}(a_{j_{1}}'') - \varphi_{n}(a_{j_{2}}'')| + \dots + |\varphi_{n}(a_{j_{t-1}}'') - \varphi_{n}(d_{i_{s-1}}')| + \\ + \dots + |\varphi_{n}(d_{i_{2}}') - \varphi_{n}(d_{i_{1}}')| + |\varphi_{n}(d_{i_{1}}') - \varphi_{n}(x')|. \end{aligned}$$

Промежуток $[a_{j_l}^n;x^n]$ лежит на опорном отрезке зигзага уровня j_l . Над этим отрезком угловые коэффициенты звеньев ломаной L_n равны $\pm k_{j_l}$. Поэтому

$$|\varphi_n(x") - \varphi_n(a''_{j_1})| \le k_{j_1}(x" - a''_{j_1}).$$
 (4)

Аналогично, промежуток $[a_{j_2}^"; a_{j_1}^"]$ лежит на опорном отрезке зигзага уровня j_2 и поэтому

$$|\varphi_n(a_{j_1}'') - \varphi_n(a_{j_2}'')| \leq k_{j_2}(a_{j_1}'' - a_{j_2}'').$$

Рассуждая так дальше получаем неравенства

$$\begin{split} |\phi_{n}(a_{j_{2}}^{"}) - \phi_{n}(a_{j_{3}}^{"})| &\leq k_{j_{3}}(a_{j_{2}}^{"} - a_{j_{3}}^{"}), \\ & \dots \\ |\phi_{n}(a_{j_{t-2}}^{"}) - \phi_{n}(a_{j_{t-1}}^{"})| &\leq k_{j_{t-1}}(a_{j_{t-2}}^{"} - a_{j_{t-1}}^{"}), \\ |\phi_{n}(a_{j_{t-1}}^{"}) - \phi_{n}(d_{j_{s-1}}^{"})| &\leq k_{j_{t}}(a_{j_{t-1}}^{"} - d_{i_{s-1}}^{"}) = k_{i_{s}}(a_{j_{t-1}}^{"} - d_{i_{s-1}}^{"}), \\ |\phi_{n}(d_{i_{s-1}}^{"}) - \phi_{n}(d_{i_{s-2}}^{"})| &\leq k_{i_{s-1}}(d_{i_{s-1}}^{"} - d_{i_{s-2}}^{"}), \\ & \dots \\ |\phi_{n}(d_{i_{2}}^{"}) - \phi_{n}(d_{i_{1}}^{"})| &\leq k_{i_{2}}(d_{i_{2}}^{"} - d_{i_{1}}^{"}), \\ |\phi_{n}(d_{i_{1}}^{"}) - \phi_{n}(x^{"})| &\leq k_{i_{1}}(d_{i_{1}}^{"} - x^{"}). \end{split}$$

В наборе опорных отрезков, входящих во включения (2), опорный отрезок каждого уровня встречается не более двух раз, поэтому суммарная длина отрезков одного уровня из (2) не превосходит ширины соответствующего звена Δ_n ломаной линии \mathcal{L} .

Оценим слагаемые из суммы, стоящей в правой части (3), используя неравенство (4) и следующие за ним аналогичные неравенства. При этом упорядочим слагаемые в правой части (3) в порядке убывания номера зигзага и объединим слагаемые, относящиеся к зигзагам одного уровня. Пусть $m_1 < ... < m_l$ номера уровней зигзагов для которых в сумме (3) есть соответствующие слагаемые, а $\delta_{m_1}, ..., \delta_{m_l}$ — суммарная длина опорных отрезков зигзагов уровней $m_1, ..., m_l$. Тогда из соотношений (3), (4) и неравенств, следующих за (4), вытекает, что

$$|\varphi_n(x'') - \varphi_n(x')| \le k_{m_1} \delta_{m_1} + \ldots + k_{m_l} \delta_{m_l},$$
 (5)

причем $x''-x'=\delta_{m_1}+\ldots+\delta_{m_l}$ и каждое δ_{m_j} не превосходит ширины звена Δ_{m_j} ломаной линии $\mathcal L$, вписанной в график функции $\omega(t)$.

Пусть звено Δ_{m_j} ломаной линии $\mathcal L$ лежит над отрезком $[t'_{m_j}, t''_{m_j}]$ оси Ox. По определению угловых коэффициентов k_n и так как δ_{m_j} не превосходит ширины звена Δ_{m_j} , равной $t''_{m_j} - t'_{m_j}$, то, учитывая выпуклость функции $\omega(t)$ вверх, получаем, что при каждом $j=1,\ldots,l$

$$k_{m_{j}}\delta_{j} = \frac{\omega(t'_{m_{j}}) - \omega(t'_{m_{j}})}{t''_{m_{j}} - t'_{m_{j}}}\delta_{j} \leq$$

$$\leq \frac{\omega(t'_{m_{j}} + \delta_{j}) - \omega(t'_{m_{j}})}{\delta_{j}}\delta_{j} = \omega(t'_{m_{j}} + \delta_{j}) - \omega(t'_{m_{j}}).$$

$$(6)$$

Подставляя соотношения (6) в (5) получаем,

$$\begin{aligned} |\phi_{n}(x'') - \phi_{n}(x')| &\leq (\omega(t'_{m_{1}} + \delta_{1}) - \omega(t'_{m_{1}})) + \\ &+ (\omega(t'_{m_{2}} + \delta_{2}) - \omega(t'_{m_{2}})) + \dots + (\omega(t'_{m_{l}} + \delta_{l}) - \omega(t'_{m_{l}})). \end{aligned}$$
(7)

В силу выпуклости функции $\omega(t)$ вверх и ее монотонного возрастания выполнено неравенство

$$\omega(t'_{m_1}+\delta_1)-\omega(t'_{m_1})\leq \omega(\delta_1).$$

Так как $t_{m_1}' \geqslant t_{m_1}'' \geqslant t_{m_1}'' + \delta_1 > \delta_1$, то, аналогично,

$$\omega(t'_{m_2} + \delta_2) - \omega(t'_{m_2}) \leq \omega(\delta_1 + \delta_2) - h(\delta_1)$$

Рассуждая так дальше получаем, что при каждом $j=1,\dots,l$ выполнено неравенство $t_{m_j}'>\delta_1+\dots+\delta_{j-1}$ и поэтому

$$\omega(t'_{m_j} + \delta_j) - \omega(t'_{m_j}) \leq \omega(\delta_1 + \dots + \delta_{j-1} + \delta_j) - \omega(\delta_1 + \dots + \delta_{j-1}).$$

Подставляя эти неравенства в правую часть (7), получаем оценку приращения функции $\phi_n(x)$

$$\begin{aligned} |\varphi_{n}(x'') - \varphi_{n}(x')| &\leq \omega(\delta_{1}) + (\omega(\delta_{1} + \delta_{2}) - \omega(\delta_{1})) + \dots + \\ &+ (\omega(\delta_{1} + \dots + \delta_{l-1} + \delta_{l}) - \omega(\delta_{1} + \dots + \delta_{l-1})) = \\ &= \omega(\delta_{1} + \dots + \delta_{l}) = \omega(x'' - x'). \end{aligned}$$

Соответствующая оценка приращения функции $\phi_o(x)$ следует отсюда при $n \to \infty$.

Таким образом, функция $\phi_{\omega}(x)$ дает пример непрерывной нигде не дифференцируемой функции, модуль непрерывности которой не превосходит произвольного нелипшицевого модуля непрерывности $\omega(t)$, причем в любой проколотой окрестности каждой точки $x \in [0;1]$ найдется точка, $x' \in [0;1]$, в которой $\phi_{\omega}(x') = \phi_{\omega}(x)$.

Теорема доказана.

выводы

Положим $f_{\omega}(z) = f_{\omega}(x+iy) := \varphi_{\omega}(x)$. Функция $f_{\omega}(z)$ нигде не дифференцируема, даже как функция двух действительных переменных, и ее модуль непрерывности не превосходит $\omega(t)$, при этом функция $f_{\omega}(z)$ в каждой точке z имеет нулевое производное число вдоль двух взаимно перепендикулярных направлений. Пример $f_{\omega}(z)$ показывает, что в достаточных условиях голоморфности из работы автора [5] (2022) предположение о выполнении в точках ζ области условия Липшица относительно множеств E_{ζ} той или иной структуры, ослабить нельзя.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ефимов А.В.* Линейные методы приближения непрерывных периодических функций // Матем. сб. 1961. Т. 54. Вып. 1. С. 51–90.
- Loud W.S. Functions with prescribed Lipschitz condition // Proc. Amer. Math. Soc. 1951. V. 2. № 3. P. 358–360.
- 3. *Marx I., Piranian G.* Lipschitz functions of continuous functions // Pacific Jour. of Math. 1953. V. 3. № 2. P. 447–459.
- 4. *Рубинштейн А.И.* Об ω -лакунарных рядах и о функциях классов H^{ω} // Матем. сб. 1964. Т. 65. Вып. 2. С. 239—271.
- 5. Теляковский Д.С. Об условиях моногенности. Современные проблемы теории функций и их приложения // Материалы 21-й международной Саратовской зимней школы. Саратов, 2022. С. 289—293.
- Бржечка В.Ф. О функции Больцано (к столетию со дня смерти чешского математика Бернарда Больцано) // УМН. 1949. Т. 4. Вып. 2(30). С. 15–21.

Vestnik Natsional'nogo Issledovatel'skogo Yadernogo Universiteta "MIFI", 2022, vol. 11, no. 3, pp. 228-234

Example of a Continuous Nowhere-Differentiable Function with the Modulus of Continuity not Exceeding a Given Value

D. S. Telyakovskii^{a,#}

^aNational Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia [#]e-mail: dtelyakov@mail.ru

Received July 31, 2022; revised September 18, 2022; accepted September 27, 2022

Abstract—For an arbitrary convex non-Lipchitz modulus of continuity $\omega(t)$, we construct a continuous nowhere-differentiable function $\phi_{\omega}(x)$, whose modulus of continuity does not exceed $\omega(t)$ and that has zero derivative number at every point, is constructed. This construction follows the work of B. Bolzano for the continuous nowhere-differentiable function. The function $f_{\omega}(z) = f_{\omega}(x+iy) := \phi_{\omega}(x)$ is a continuous nowhere-differentiable function, even if it is considered as a function of two real variables, whose modulus of continuity does not exceed $\omega(t)$ and that has zero derivative number at every point along two noncollinear directions. A sufficient condition of analyticity is obtained in this work under the assumption that the function satisfies of the Lipschitz condition at every point ζ along some set E_{ζ} rather than the conventional assumption that the function has a derivative with respect to z at every point ζ along some set E_{ζ} . Such a function $f_{\omega}(z)$ shows that the former assumption cannot be weakened in this theorem.

Keywords: modulus of continuity, nowhere-differentiable function, derivative number

DOI: 10.56304/S2304487X22030117

REFERENCES

- 1. Efimov A.V. Linejnye metody priblizheniya teorii funkcij i ih prilozheniya. [Linear methods of approximating continuous periodic functions]. *Matematicheskij sbornik*, 1961, vol. 54, iss.1, pp. 51–90. (Russian)
- Loud W.S. Functions with prescribed Lipschitz condition. *Proc. Amer. Math. Soc.*, 1951, vol. 2, no. 3, pp. 358–360.
- 3. Marx I., Piranian G. Lipschitz functions of continuous functions. *Pacific Jour. Of Math.*, 1953, vol. 3, no. 2, pp. 447–459.
- 4. Rubinshtein A.I. Ob ω-lakunarnyh ryadah i o funkciyah klassov H^{ω} . [On ω-lacunary series and functions of

- the classes H^{ω}]. *Matematicheskij sbornik*, 1964, vol. 2, pp. 239–271. (Russian)
- Telyakovskij D.S. Ob usloviyah monogennosti. Sovremennye problemy teorii funkcij i ih rilozheniya. [On monogeneity conditions. Modern problems of theory of functions and their applications]. *Materialy 21-j mezhdunarodnoj Saratovskoj zimnej shkoly*. [Proceedings of 21 international Saratov winter workshop]. Saratov, 2022, pp. 289–293. (Russian)
- Brzhechka V.F. O funkcii Bol'cano (k stoletiyu so dnya smerti cheshskogo matematika Bernarda Bol'cano). [On the Bolzano function. (On the 100th anniversary of the death of the Czech mathematician Bernhard Bolzano)]. *UMN*, 1949, vol. 4, no. 2(30), pp. 15–21. (Russian)