МАТЕМАТИЧЕСКИЕ МОДЕЛИ И ЧИСЛЕННЫЕ МЕТОДЫ

УДК 517.95

ПРЕОБРАЗОВАНИЯ НЕКОТОРЫХ НЕЛИНЕЙНЫХ УРАВНЕНИЙ С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ

© 2023 П.А. Грибов, Н.А. Кудряшов, А.А. Кутуков*

Национальный исследовательский ядерный университет «МИФИ», Москва, 115409, Россия *e-mail: alexkutuk@gmail.com

Поступила в редакцию 06.06.2023 После доработки: 08.06.2023 Принята к публикации: 15.06.2023

Представлены преобразования для нелинейных уравнений в частных производных с переменным коэффициентом. Показано, что свойства интегрируемости для некоторых уравнений с переменными коэффициентами выполняются естественным образом, так как эти уравнения преобразуются к хорошо известным интегрируемым уравнениям в частных производных.

Ключевые слова: солитонные преобразования, дифференциальные уравнения с переменными коэффициентами, интегрируемые дифференциальные уравнения.

DOI: 10.26583/vestnik.2023.245

В последние годы появились обширные исследования, посвященные нелинейным дифференциальным уравнениям в частных производных с переменными коэффициентами (см., например, [1–14]). Эти уравнения являются естественными обобщениями многих хорошо известных уравнений из различных разделов физики.

В данной работе исследуются широко известные нелинейные уравнения в частных производных с переменными коэффициентами, для которых применяются преобразования переменных. Показано, что некоторые нелинейные уравнения с переменными коэффициентами являются интегрируемыми уравнениями и обладают всеми свойствами интегрируемости, поскольку они преобразуются к хорошо известным интегрируемым уравнениям.

Рассмотрим уравнение Кортевега—де Вриза с переменными коэффициентами, имеющее вид

$$u_t + 3uu_x + u_{xxx} + (\varphi_1(t)x + \varphi_2(t))u_x + 2\varphi_1(t)u = 0.$$
 (1)

Уравнение (1) изучено, в частности, в работе [1], где было показано, что оно может быть решено с помощью преобразования рассеяния. Уравнение (1) имеет псевдопотенциалы Уолквиста—

Эстабрука и пару Лакса [2]. Недавно было обнаружено, что уравнение (1) обладает свойством Пенлеве и имеет рациональные решения [7].

Ниже будет показано, что уравнение (1) может быть преобразовано к хорошо известному уравнению Кортевега—де Вриза.

Покажем, что это можно сделать с помощью преобразований:

$$v(y,\tau) = \frac{1}{k^2(t)}u(x,t),$$
 (2)

$$y = k(t)x - \int_0^t k(\varsigma)\varphi_2(\varsigma)d\varsigma, \qquad (3)$$

$$\tau = \int_0^t k^3(\varsigma) d\varsigma, \tag{4}$$

где

$$k(t) = k(t = 0)\exp\left\{-\int_0^t \varphi_1(\xi)d\xi\right\}.$$
 (5)

Назовем эти преобразования солитонными, потому что они позволяют находить солитонные решения некоторых уравнений.

С учетом преобразований (2)–(4) получаются соотношения

$$\frac{\partial}{\partial t} = k^3 \frac{\partial}{\partial \tau} + \left(x \frac{dk}{dt} - k \varphi_2 \right) \frac{\partial}{\partial y},\tag{6}$$

$$\frac{\partial}{\partial x} = k \frac{\partial}{\partial y}. (7)$$

Подстановка (2)–(7) в уравнение (1) приводит к уравнению Кортевега–де Вриза:

$$v_{\tau} + 3vv_{y} + v_{yyy} = 0. \tag{8}$$

Очевидно, уравнение (1) обладает естественными свойствами для интегрируемых уравнений. В частности, оно имеет солитонные решения. Односолитонное решение для уравнения (1) принимает вид

$$u(x,t) = k^{2}(t) \operatorname{ch}^{-2} \left\{ \frac{1}{2} (k(t)x - \omega(t)) \right\},$$
 (9)

где $\omega(t)$ удовлетворяет следующему уравнению:

$$\frac{d\omega}{dt} = k^3 + \varphi_2 k. \tag{10}$$

N-солитонные решения уравнения (1) определяются формулой Хироты для обычного уравнения Кортевега—де Вриза [8]:

$$u = 4 \frac{\partial^2 \ln \Phi_N}{\partial x^2},\tag{11}$$

где $\Phi_N = \Phi(\theta_1, ..., \theta_N)$ соответствует решению уравнения Хироты [8], и

$$\theta_i = k_i(t)x - \omega_i(t), \tag{12}$$

$$k_j(t) = k_j(t=0) \exp\left\{-\int_0^t \varphi_1(\tau) d\tau\right\},$$
 (13)

$$\frac{d\omega_j}{dt} = k_j^3 + \varphi_2(t)k_j. \tag{14}$$

Фазовый сдвиг для солитонов определяется по формуле

$$e^{A_{ij}} = \left(\frac{k_i - k_j}{k_i + k_j}\right)^2 = \left(\frac{k_i(t=0) - k_j(t=0)}{k_i(t=0) + k_j(t=0)}\right)^2.$$
(15)

Можно также получить пару Лакса и бесконечное число сохраняющихся величин для уравнения (1) с учетом пары Лакса и сохраняющихся величин для обычного уравнения Кортевега—де Вриза и преобразований (2)—(4).

Заметим, что уравнение (1) можно получить из уравнения Кортевега—де Вриза (8), если использовать преобразования (6) и (7) в виде

$$\frac{\partial}{\partial \tau} = \frac{1}{k^3} \frac{\partial}{\partial t} + \left(\frac{dk}{dt} x - k \varphi_2\right) \frac{\partial}{\partial x},\tag{16}$$

$$\frac{\partial}{\partial y} = \frac{1}{k} \frac{\partial}{\partial x} \tag{17}$$

и принять во внимание уравнение

$$\frac{dk}{dt} + \varphi_1 k = 0. (18)$$

В качестве второго примера рассмотрим модифицированное уравнение Кортевега—де Вриза с переменными коэффициентами, которое имеет вид [2, 7]

$$u_t + 6u^2 u_x + u_{xxx} + + (\varphi_1(t)x + \varphi_2(t))u_x + \varphi_1(t)u = 0.$$
 (19)

Используя преобразование

$$v(y,\tau) = \frac{1}{k(t)}u(x,t) \tag{20}$$

и у, т из (6), (7), получим модифицированное уравнение Кортевега—де Вриза:

$$v_{\tau} + 6v^2v_{\nu} + v_{\nu\nu\nu} = 0. {21}$$

Уравнение (19) обладает всеми свойствами интегрируемого уравнения, потому что оно приводится преобразованиями (6), (7) и (20) к уравнению (21). В частности, уравнение (19) имеет солитонные решения, которые выражаются формулами Хироты для модифицированного уравнения Кортевега—де Вриза. Например, односолитонное решение для уравнения (19) принимает вид

$$u(x,t) = \frac{k(t)}{\operatorname{ch}(k(t)x - w(t))},\tag{22}$$

где k(t) и $\omega(t)$ определяются уравнениями (18) и (10).

Рассмотрим также обобщенное нелинейное уравнение Шредингера в виде

$$iu_t + u_{xx} + 2|u|^2 u +$$

$$+i(\varphi_1(t)x + \varphi_2(t))u_x + i\varphi_1(t)u = 0. \quad (23)$$

Задача рассеяния для уравнения (23) принимает вид

$$\Psi_{1x} + i\lambda\Psi_1 - u\Psi_2 = 0, \tag{24}$$

$$\Psi_{2x} - i\lambda\Psi_2 - u^*\Psi_1 = 0. \tag{25}$$

Временная зависимость Ψ_1 и Ψ_2 выбирается в виде

$$\Psi_{1t} = A\Psi_1 + B\Psi_2, \tag{26}$$

$$\Psi_{2t} = C\Psi_1 - A\Psi_2, \tag{27}$$

гле

$$A = -2i\lambda^2 + i(\varphi_1 x + \varphi_2)\lambda + iuu^*, \quad (28)$$

$$B = 2u\lambda - u(\varphi_1 x + \varphi_2) + iu_x, \tag{29}$$

$$C = -2u^*\lambda + u^*(\varphi_1 x + \varphi_2) + iu_x^*$$
 (30)

при

$$\lambda_t + \varphi_1 \lambda = 0. \tag{31}$$

В этом случае солитонные преобразования выбираются в виде

$$y = k(t)x - \int_0^t \varphi_2(\varsigma)k(\varsigma)d\varsigma, \tag{32}$$

$$v(y,\tau) = \frac{1}{k(t)}u(x,t),$$
 (33)

$$\tau = \int_0^t k^2(\varsigma) d\varsigma, \tag{34}$$

где

$$k(t) = k(t = 0)\exp\left\{-\int_0^t \varphi_1(\xi)d\xi\right\}.$$
 (35)

Подстановка (32)–(35) в уравнение (23) дает нелинейное уравнение Шредингера

$$iv_{\tau} + v_{yy} + 2|v|^2 v = 0. (36)$$

Уравнение (23) также обладает всеми свойствами, уникальными для интегрируемых уравнений. В частности, это уравнение имеет солитонные решения. Односолитонное решение уравнения (23) принимает вид

$$u = \frac{\exp(\theta_1)}{1 + \exp\{\theta_1 + \theta_1^* + \phi_{11}\}},\tag{37}$$

где

$$\theta_1 = k_1(t)x + \omega_1(t), \tag{38}$$

$$\exp\{\varphi_{11}\} = \frac{1}{2}(k_1 + k_1^*)^{-2},\tag{39}$$

$$\frac{dk_1}{dt} + \phi_1 k_1 = 0, (40)$$

$$\frac{d\omega_1}{dt} = ik_1^2 - \varphi_2 k_1 - \varphi_1. \tag{41}$$

Использование преобразования

$$u = \frac{G}{F} \tag{42}$$

позволяет получить *N*-солитонные решения уравнения (23) по аналогии с нелинейным уравнением Шредингера [8]. Они выражаются при помощи формул для *N*-солитонных решений.

Можно получить и другие интегрируемые уравнения с переменными коэффициентами, подобные тем, которые рассматривались выше с учетом известных интегрируемых уравнений.

Предположим, что уравнение

$$v_{\tau} + L(v) = 0 \tag{43}$$

является интегрируемым. Рассмотрим солитонные преобразования в виде

$$v(y,\tau) = \frac{1}{s(t)}u(x,t),\tag{44}$$

$$y = \alpha(t)x + \beta(t), \tag{45}$$

$$\tau = \gamma(t), \tag{46}$$

где s(t), $\alpha(t)$, $\beta(t)$ и $\gamma(t)$ — гладкие функции от t. С учетом (45), (46) получаются соотношения

$$\frac{\partial}{\partial \tau} = \frac{1}{\dot{\gamma}} \frac{\partial}{\partial t} - \frac{\dot{\alpha}x + \dot{\beta}}{\alpha \dot{\gamma}} \frac{\partial}{\partial x},\tag{47}$$

$$\frac{\partial}{\partial y} = \frac{1}{\alpha} \frac{\partial}{\partial x}.$$
 (48)

Используя уравнение (43) и преобразования (44)-(46), получаем уравнение

$$u_t - \frac{\dot{s}}{s}u - \frac{\dot{\alpha}x + \dot{\beta}}{\alpha}u_x + \dot{\gamma}sL\left(\frac{u}{s}\right) = 0. \tag{49}$$

Принимая во внимание форму оператора L(v); можно найти новое интегрируемое уравнение, которое соответствует уравнению (43).

Возьмем, к примеру, уравнение Буссинеска:

$$v_{\tau\tau} + v_{\nu\nu\nu} + 3(v^2)_{\nu\nu} = 0. \tag{50}$$

Используя преобразования (44)–(46) и формулы (47) и (48), получаем следующее уравнение [2]:

$$u_{tt} + u_{xxxx} + 3(u^2)_{xx} + (2F_1x + F_2)u_{xt} +$$

$$+6F_1u_t + \frac{1}{4}(2F_1x + F_2)^2u_{xx} +$$

$$+ \left[(7F_1^2 + F_{1t})x + \frac{7}{2}F_1F_2 + \frac{1}{2}F_{2t} \right] \times$$

$$\times u_x + (8F_1^2 + 2F_{1t})u = 0.$$
(51)

если принять в (44)-(46)

$$\frac{d\alpha}{dt} = -\alpha F_1(t),\tag{52}$$

$$s = \alpha^2(t), \tag{53}$$

$$\frac{d\beta}{dt} = -\frac{1}{2}\alpha F_2,\tag{54}$$

$$\frac{d\gamma}{dt} = \alpha^2(t),\tag{55}$$

где $F_1(t)$ и $F_2(t)$ — произвольные гладкие функции от t.

В заключение сформулируем результаты данной работы. Рассмотрены некоторые нелинейные дифференциальные уравнения в частных производных с переменными коэффициентами и показано, что эти уравнения преобразуются к хорошо известным интегрируемым уравнениям. Так-

же показано, что эти уравнения обладают солитонными решениями и всеми другими свойствами интегрируемых уравнений.

БЛАГОДАРНОСТИ

Исследование выполнено за счет гранта Российского научного фонда № 22-11-00141, https://rscf.ru/project/22-11-00141/.

Вклад авторов: Н.А. Кудряшов – идея метода, концепция исследования; А.А. Кутуков – подготовка примеров, написание текста статьи; П.А. Грибов – обзор публикаций, проверка текста на ошибки.

СПИСОК ЛИТЕРАТУРЫ

- 1. Chan W. L., Kam Shun L. Nonpropagating solitons of the variable coefficient and nonisospectral Korteweg-de Vries equation. Journal of Mathematical Physics, 1989. V. 30(11). Pp. 2521–2526.
- 2. Lou S. Y. Pseudopotentials. Lax pairs and Backlund transformations for some variable coefficient nonlinear equations. Journal of Physics A: Mathematical and General, 1991. V. 24(10). L513.
- 3. *Porsezian K*. Backlund transformations and explicit solutions of certain inhomogeneous nonlinear Schrodinger-type equations. Journal of Physics A: Mathematical and General, 1991. V. 24(7). L337.
- 4. *Porsezian K., Daniel, M., Bharathikannan R.* Generalized χ-dependent Hirota equation: singularity structure, Bäcklund transformation and soliton solutions. Physics Letters A, 1991. V. 156(5). Pp. 206–210.
- 5. Winternitz P., Gazeau J.P. Allowed transformations and symmetry classes of variable coefficient Korteweg-de Vries equations. Physics Letters A, 1992. V. 167(3). Pp. 246–250.

- 6. *Gagnon L., Winternitz P. Symmetry* classes of variable coefficient nonlinear Schrodinger equations. Journal of Physics A: Mathematical and General, 1993. V. 26(23). Pp. 7061.
- 7. *Kudryashov N.A.*, *Nikitin V.A.* Painleve analysis, rational and special solutions of variable coefficient Korteweg-de Vries equations. Journal of Physics A: Mathematical and General, 1994. V. 27(4). L101.
- 8. *Hirota R*. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Physical Review Letters, 1971. V. 27(18). Pp. 1192.
- 9. Caudrey P.J., Gibbon J.D., Eilbeck J.C., Bullough R.K. Exact multisoliton solutions of the self-induced transparency and sine-Gordon equations. Physical Review Letters, 1973. V. 30(6). Pp. 237.
- 10. *Kudryashov N.A.* Governed optical solitons of the generalized Schrödinger equation with dual-power law of refractive index. Optik, 2022. V. 266. № 169619.
- 11. Zhao J., Luan Z., Zhang P., Dai C., Biswas A., Liu W., Kudryashov N. A. Dark three-soliton for a nonlinear Schrödinger equation in inhomogeneous optical fiber. Optik, 2020. V. 220. No. 165189.
- 12. Popov S.P. Neavtonomnye solitonnye reshenija modificirovannogo uravnenija Kortevega–de Vriza–sinus-Gordona [Nonautonomous soliton solutions of the modified Korteweg-de Vries-sine-Gordon equation]. Computational Mathematics and Mathematical Physics, 2016. V. 56. № 11. Pp. 1960–1969 (in Russian).
- 13. Liu X., Luan Z., Zhou Q., Liu W., Biswas A. Dark two-soliton solutions for nonlinear Schrödinger equations in inhomogeneous optical fibers. Chinese Journal of Physics, 2019. V. 61. Pp. 310–315.
- 14. Clarkson P.A. Painleve analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation. IMA journal of applied mathematics, 1990. V. 44(1). Pp. 27–53.

Vestnik Natsional'nogo issledovatel'skogo yadernogo universiteta «MIFI», 2023, vol. 12, no. 2, pp. 90–94

TRANSFORMATIONS OF SOME NONLINEAR EQUATIONS WITH VARIABLE COEFFICIENTS

P.A. Gribov, N.A. Kudryashov, A.A. Kutukov*

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409 Russia *e-mail: alexkutuk@gmail.com

Received June 6, 2023; revised June 8, 2023; accepted June 15, 2023

Transformations for non-linear partial differential equations with a variable coefficient are presented. It is shown that the integrability properties for some equations with variable coefficients are satisfied in a natural way, since these equations are transformed to well-known integrable partial differential equations.

Keywords: soliton transformations, differential equations with variable coefficients, integrable differential equations.

REFERENCES

- 1. *Chan W. L., Kam Shun L.* Nonpropagating solitons of the variable coefficient and nonisospectral Korteweg-de Vries equation. Journal of Mathematical Physics, 1989. Vol. 30(11). Pp. 2521–2526.
- 2. Lou S. Y. Pseudopotentials. Lax pairs and Backlund transformations for some variable coefficient nonlinear equations. Journal of Physics A: Mathematical and General, 1991. Vol. 24(10). L513.
- 3. *Porsezian K*. Backlund transformations and explicit solutions of certain inhomogeneous nonlinear Schrodinger-type equations. Journal of Physics A: Mathematical and General, 1991. Vol. 24(7). L337.
- 4. *Porsezian K., Daniel, M., Bharathikannan R.* Generalized χ-dependent Hirota equation: singularity structure, Bäcklund transformation and soliton solutions. Physics Letters A, 1991. Vol. 156(5). Pp. 206–210.
- 5. Winternitz P., Gazeau J.P. Allowed transformations and symmetry classes of variable coefficient Korteweg-de Vries equations. Physics Letters A, 1992. Vol. 167(3). Pp. 246–250.
- 6. Gagnon L., Winternitz P. Symmetry classes of variable coefficient nonlinear Schrodinger equations. Journal of Physics A: Mathematical and General, 1993. Vol. 26(23). Pp. 7061.
- 7. *Kudryashov N.A.*, *Nikitin V.A.* Painleve analysis, rational and special solutions of variable coefficient Korteweg-de Vries equations. Journal of Physics A: Mathematical and General, 1994. Vol. 27(4). L101.

- 8. *Hirota R*. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Physical Review Letters, 1971. Vol. 27(18). Pp. 1192.
- 9. Caudrey P.J., Gibbon J.D., Eilbeck J.C., Bullough R.K. Exact multisoliton solutions of the self-induced transparency and sine-Gordon equations. Physical Review Letters, 1973. Vol. 30(6). Pp. 237.
- 10. *Kudryashov N.A.* Governed optical solitons of the generalized Schrödinger equation with dual-power law of refractive index. Optik, 2022. Vol. 266. No. 169619.
- 11. Zhao J., Luan Z., Zhang P., Dai C., Biswas A., Liu W., Kudryashov N. A. Dark three-soliton for a nonlinear Schrödinger equation in inhomogeneous optical fiber. Optik, 2020. Vol. 220. No. 165189.
- 12. Popov S.P. Neavtonomnye solitonnye reshenija modificirovannogo uravnenija Kortevega-de Vriza-sinus-Gordona [Nonautonomous soliton solutions of the modified Korteweg-de Vries-sine-Gordon equation]. Computational Mathematics and Mathematical Physics, 2016. Vol. 56, No. 11. Pp. 1960–1969 (in Russian).
- 13. Liu X., Luan Z., Zhou Q., Liu W., Biswas A. Dark two-soliton solutions for nonlinear Schrödinger equations in inhomogeneous optical fibers. Chinese Journal of Physics, 2019. Vol. 61. Pp. 310–315.
- 14. Clarkson P.A. Painleve analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation. IMA journal of applied mathematics, 1990. Vol. 44(1). Pp. 27–53.