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В работе используется методика представлений решений системы нелинейных уравнений движения в 
виде бесконечных тригонометрических рядов от двух пространственных переменных. Коэффициенты рядов 
являются искомыми функциями от времени, для которых выписана бесконечная система обыкновенных 
дифференциальных уравнений. Начальные данные задаются в виде конечных тригонометрических сумм. 
Приближенные решения поставленных задач Коши также строятся в виде конечных отрезков тригономет-
рических рядов. При различных начальных данных в работе рассмотрены конкретные нестационарные дву-
мерные периодические по пространственным переменным 𝑥, 𝑦 течения газа и проанализированы их свой-
ства. 
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ВВЕДЕНИЕ 
 

В настоящее время для решения очень мно-
гих важных для практики проблем возникает 
необходимость исследования различных 
начально-краевых задач для нелинейных урав-
нений с частными производными. На сего-
дняшний день основным способом построения 
решений подобных задач являются разностные 
методы, при которых численно определяется 
конечное число значений искомых функций в 
отдельных изолированных точках. Но, несмотря 
на прогресс в разработке этих численных мето-
дов и на все увеличивающуюся производитель-
ность вычислительной техники, очень часто под 
вопросом остаются надежность и адекватность 
численных результатов, получаемых разност-
ными методами.  

Среди аналитических методов получения 
решений нелинейных уравнений с частными 
производными одним из основных является ис-
пользование конечных или бесконечных пред-
ставлений с применением различных систем 

базисных функций для разных функциональных 
пространств.  

На протяжении более чем двухсотлетней ис-
тории исследований линейных уравнений с 
частными производными одним из востребо-
ванных функциональных базисов является ба-
зис из тригонометрических функций. Чуть ме-
нее десяти лет назад, т.е. минуя 200 лет после 
работ Ж.Б.Ж. Фурье, методика применения бес-
конечных тригонометрических рядов впервые 
была эффективно применена при построении 
решений нелинейной системы уравнений с 
частными производными смешанного типа для 
математического моделирования одномерных 
течений сжимаемого вязкого теплопроводного 
газа [1]. Недавно описанная в работе [1] мето-
дика представления с помощью тригонометри-
ческих рядов решений задач Коши была приме-
нена [2–5] к уравнению Бюргерса и к нелиней-
ной системе из двух уравнений с частными 
производными в случае двух независимых про-
странственных переменных. В том числе уда-
лось доказать сходимость этих рядов в окрест-
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ности точки 𝑡 = 0 и при всех значениях незави-
симых переменных 𝑥, 𝑦 [2–5]. 

Меняя начальные условия, удается с помо-
щью конечных отрезков тригонометрических 
рядов восстанавливать приближенные решения 
с очень интересными свойствами. 

Цель данной работы состоит в следующем: 
перебирая разные начальные условия, получить 
сложные течения, в том числе имеющие обла-
сти завихренных потоков и особенности типа 
«бесконечные градиенты» по пространствен-
ным переменным. Как показывает практика по-
строения решений нелинейных уравнений с 
частными производными разностными метода-
ми, при их применении не удается надежно рас-
считать течения с большими значениями произ-
водных по переменным 𝑥 и 𝑦. И поэтому реше-
ния, полученные с помощью отрезков тригоно-
метрических рядов, можно использовать как 
тесты для проверки точности решений, получа-
емых разностными методами.  

 
ПОСТАНОВКА ЗАДАЧИ 

 

В качестве математической модели для при-
ближенной передачи движений газа далее из 
полной системы уравнений Навье–Стокса [6] 
исследуются только уравнения движения в 
предположении постоянных значений термоди-
намических параметров плотности и температу-
ры ρ = 1, 𝑇 = 1: 

 
 

𝑽𝑡 + (𝑽 ∙ ∇)𝑽 = μ0 [
1

4
∇(div 𝑽) +

3

4
∆𝑽].     (1) 

 
В системе (1) введены безразмерные пере-

менные. При этом за масштаб скорости 𝑢00 взя-
та величина 1

3
∙ 103 м/с, близкая к скорости зву-

ка в воздухе при нормальных условиях. За мас-
штаб расстояния 𝑥00 берется величина, соответ-
ствующая геометрическим характеристикам 
конкретного исследуемого течения. 

В данной работе рассматривается случай от-
сутствия зависимости от 𝑧 и равенства нулю 
третей компоненты вектора скорости газа: 

 
∂

∂𝑧
= 0;  𝜐3 = 0, 

 
и вводятся обозначения 𝑢 = 𝜐1, 𝜐 = 𝜐2. В этом 
случае система (1) в подробной записи имеет 
следующий вид: 

{
𝑢𝑡 + 𝑢𝑢𝑥 + 𝜐𝑢𝑦 = μ0 (𝑢𝑥𝑥 +

3

4
𝑢𝑦𝑦 +

1

4
𝑢𝑥𝑦) ,

𝜐𝑡 + 𝑢𝜐𝑥 + 𝜐𝜐𝑦 = μ0 (
3

4
𝜐𝑥𝑥 + 𝜐𝑦𝑦 +

1

4
𝑢𝑥𝑦) ,

(2)  

 
а третье уравнение системы (1) выполняется 
тождественно. 

Далее о системе (2) и будет говориться как о 
системе уравнений движения. 

В монографии [1] было предложено пред-
ставлять одномерные решения полной системы 
уравнений Навье–Стокса в виде тригонометри-
ческих рядов. 

В данной работе рассматривается случай 
двух пространственных переменных, и с учетом 
результатов из работ [1–5] используются сле-
дующие представления искомых функций 𝑢, 𝑣: 
 

𝑢(𝑡, 𝑥, 𝑦) = 𝑢1(𝑡, 𝑥)+𝑢2(𝑡, 𝑦) = 

=∑𝑢𝑘,1(𝑡) sin(𝑘𝑥) + ∑ 𝑢𝑚,2(𝑡) sin(𝑚𝑦) ,

∞

𝑚=1

∞

𝑘=1

 

  (3) 
𝜐(𝑡, 𝑥, 𝑦) = 𝜐1(𝑡, 𝑥)+𝜐2(𝑡, 𝑦) = 

=∑𝜐𝑘,1(𝑡) sin(𝑘𝑥) + ∑ 𝜐𝑚,2(𝑡) sin(𝑚𝑦).

∞

𝑚=1

∞

𝑘=1

 

 
У искомых коэффициентов, зависящих от 

времени, стоят двойные индексы: первый ин-
декс соответствует частоте гармоники, перед 
которой стоит этот коэффициент; второй индекс 
равен единице, если коэффициент стоит перед 
гармоникой, зависящей от пространственной 
переменной 𝑥, и равен двойке, если коэффици-
ент стоит перед гармоникой, зависящей от про-
странственной переменной 𝑦. 

В системе (2) в левых частях обоих уравне-
ний оставим только частные производные по 
времени, а все остальные слагаемые из левых 
частей перенесем в правые части рассматривае-
мых уравнений, т.е. запишем систему (2) в нор-
мальной форме: 

 

{
 
 

 
 
𝑢𝑡 = −𝑢𝑢𝑥 − 𝜐𝑢𝑦+μ0 ×

× (𝑢𝑥𝑥 +
3

4
𝑢𝑦𝑦 +

1

4
𝑢𝑥𝑦) ,

𝜐𝑡 = −𝑢𝜐𝑥 − 𝜐𝜐𝑦 + μ0 ×

× (
3

4
𝜐𝑥𝑥 + 𝜐𝑦𝑦 +

1

4
𝑢𝑥𝑦) .

               (4) 

 
Уравнения в системе (4) проецируются сна-

чала на базис  
 

{sin(𝑥) , sin(2𝑥) , sin(3𝑥) , … }, 
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а затем на базис  
 

{sin(𝑦) ,  sin(2𝑦) ,  sin(3𝑦) , … }. 
 
В результате получается бесконечная систе-

ма обыкновенных дифференциальных уравне-
ний для коэффициентов 𝑢𝑘,1(𝑡), 𝑢𝑘,2(𝑡), 𝜐𝑘,1(𝑡),  
𝜐𝑘,2(𝑡): 

 

𝑢’ℓ,1 = −
1

2
∑ ∑ 𝑚𝑢𝑘,1(𝑡)𝑢𝑚,1(𝑡)𝑏𝑘ℓ𝑚 −

𝑀
𝑚=1

𝑀
𝑘=1   

 

−μ0ℓ
2 𝑢ℓ,1;   ℓ = 1, 2, 3, …               (5) 

 

𝑣’ℓ,1 = −
1

2
∑ ∑ 𝑚𝑢𝑘,1(𝑡)𝜐𝑚,1(𝑡)𝑏𝑘ℓ𝑚 −

𝑀
𝑚=1

𝑀
𝑘=1   

 

−
3

4
μ0ℓ

2 𝜐ℓ,1;   ℓ = 1, 2, 3,…              (6) 
 

𝑢’ℓ,2 = −
1

2
∑ ∑ 𝑘𝜐𝑚,2(𝑡)𝑢𝑘,2(𝑡)𝑏𝑘ℓ𝑚 −

𝑀
𝑚=1

𝑀
𝑘=1   

 

−
3

4
μ0ℓ

2 𝑢ℓ,2;   ℓ = 1, 2, 3, …             (7) 
 

𝑣’ℓ,2 = −
1

2
∑ ∑ 𝑘𝜐𝑘,2(𝑡)𝑢𝑚,1(𝑡)𝑏𝑘ℓ𝑚 −

𝑀
𝑚=1

𝑀
𝑘=1   

 

−μ0ℓ
2 𝜐ℓ,1;   ℓ = 1, 2, 3,…,             (8) 

 

в которых символ 𝑀 означает бесконечность в 
случае рассмотрения бесконечных тригономет-
рических рядов, а в случае конечных отрезков 
тригонометрических рядов полагается 𝑀 = 𝐾. 

Для получения единственных решений си-
стем (5)–(8) задаются начальные условия 

 

𝑢𝑘,1(0) = 𝑢𝑘,1
0 ;  𝑢𝑘,2(0) = 𝑢𝑘,2

0 ; 𝜐𝑘,1(0) = 𝜐𝑘,1
0 ;  

 

 𝜐𝑘,2(0) = 𝜐𝑘,2
0 ,   𝑘 = 1,2, … 

 

такие, что числовые ряды  
 

 ∑ 𝑢𝑘,1
0𝑀

𝑘=1 ;    ∑ 𝑢𝑘,2
0𝑀

𝑘=1 ;   
 

 

∑ 𝜐𝑘,1
0𝑀

𝑘=1 ;    ∑ 𝜐𝑘,2
0𝑀

𝑘=1   
 

сходятся абсолютно. Это соответствует тому, 
что для системы (4) заданы начальные условия  

 

𝑢(𝑡, 𝑥, 𝑦)|𝑡=0 = ∑ 𝑢𝑘,1
0 sin(𝑘𝑥) +𝑀

𝑘=1

+∑ 𝑢𝑘,2
0 sin(𝑘𝑦) ,𝑀

𝑘=1

𝜐(𝑡, 𝑥, 𝑦)|𝑡=0 = ∑ 𝜐𝑘,1
0 sin(𝑘𝑥) +𝑀

𝑘=1

∑ 𝜐𝑘,2
0 sin(𝑘𝑦) .𝑀

𝑘=1

  

 
РЕЗУЛЬТАТЫ РАСЧЕТОВ 
КОНКРЕТНЫХ ТЕЧЕНИЙ 

 

При построении конкретных приближенных 
решений выбирается конечное число 𝐾 – число 
слагаемых в тригонометрических суммах 

𝑢(𝑡, 𝑥, 𝑦) = 

= ∑ [𝑢𝑘,1 sin(𝑘𝑥) + 𝑢𝑘,2 sin(𝑘𝑦)]
𝐾
𝑘=1 ,  

𝜐(𝑡, 𝑥, 𝑦) =                          (9) 

= ∑ [𝜐𝑘,1 sin(𝑘𝑥) + 𝜐𝑘,2 sin(𝑘𝑦)]
𝐾
𝑘=1 .  

При помощи констант 𝑢𝑘,10 , 𝑢𝑘,2
0 , 𝜐𝑘,1

0 , 𝜐𝑘,2
0  в 

момент времени 𝑡 = 0 задаются начальные 
условия для системы обыкновенных дифферен-
циальных уравнений, в которых верхние индек-
сы в суммах берутся равными 𝐾, т.е. 𝑀 = 𝐾. 
Переменная ℓ в этих системах принимает целые 
значения от единицы до 𝐾. 

Полученные задачи Коши для систем (5)–(8) 
решаются численно при  0 ≤ 𝑡 ≤ 𝑡𝑓, где конеч-
ный момент времени 𝑡𝑓 выбирается из смысла 
рассматриваемой задачи и ее решений.  

Для анализа свойств получаемых решений 
далее приводятся графики кривых, передающих 
поведение коэффициентов из представлений (9), 
а также поверхности 

 

𝑢(𝑡1, 𝑥, 𝑦);    𝜐(𝑡1, 𝑥, 𝑦)                 (10) 
 

в заданные моменты времени 𝑡 = 𝑡1. 
Также в заданные моменты времени 𝑡 = 𝑡1 

численно строятся мгновенные линии тока, 
начинающиеся в конкретных точках (𝑥 = 𝑥𝑗0, 
𝑦 = 𝑦𝑗

0), и которые задаются в параметрическом 
виде (𝑥𝑗(ξ), 𝑦𝑗(ξ)) в зависимости от формально 
введенной независимой переменной ξ. Здесь 
индекс j принимает целое значение от единицы 
до числа 𝑁, которое задает количество рассмат-
риваемых в момент 𝑡 = 𝑡1 линий тока.  

Функции 𝑥𝑗(ξ) и 𝑦𝑗(ξ), определяющие в па-
раметрической форме мгновенные линии тока, 
являются решениями нижеследующих задач 
Коши:  

{
  
 

  
 
𝑑𝑥𝑗

𝑑ξ
= 𝑢(𝑡1, 𝑥𝑗, 𝑦𝑗),

𝑑𝑦𝑗

𝑑ξ
= 𝜐(𝑡1, 𝑥𝑗, 𝑦𝑗),

𝑥𝑗|ξ=0 = 𝑥𝑗
0,

yj|ξ=0
= 𝑦𝑗

0.

                 (11) 

 

Для детализации результатов расчетов вво-
дится следующее обозначение сосчитанных ва-
риантов. Название «Вариант k-ℓ-m-n» означает, 
что в начальных условиях для систем (5)–(8) 
ненулевые значения имеют только коэффи-
циенты:  
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𝑢𝑘,1(0) = 𝑢ℓ,2(0) = 𝜐𝑚,1(0) = 
 

= 𝜐𝑛,2(0) = 0.1,                      (12) 
 

и у которых начальные значения для простоты 
последующего анализа все взяты равными од-
ной десятой.  

Для большей наглядности результаты расче-
тов оформлены в отдельные фильмы, ссылки на 
которые приводятся ниже.  

 
 

Результаты расчета варианта 3-3-5-5 
 
Число слагаемых в тригонометрических 

суммах (9) взято 𝐾 = 300, начальные распреде-
ления искомых функций имеют следующий 
вид:  

𝑢(0, 𝑥, 𝑦) = 0.1 sin(3𝑥) + 0.1 sin(3𝑦), 
 

𝜐(0, 𝑥, 𝑦) = 0.1 sin(5𝑥) + 0.1 sin(5𝑦).    (13) 
 

 Поведение коэффициентов конечных 
сумм (9) приведено на рис. 1–4. 

 
Рис. 1. Поведение коэффициентов 𝑢𝑘,1(𝑡) 

  
Рис. 2. Поведение коэффициентов 𝑢𝑘,2(𝑡) 

 

 
Рис. 3. Поведение коэффициентов 𝜐𝑘,1(𝑡) 

 
Рис. 4. Поведение коэффициентов 𝜐𝑘,2(𝑡) 

 
Номера, стоящие возле кривых на приведен-

ных выше графиках, задают значения первого 
индекса у коэффициентов. Из анализа поведе-
ния кривых на рис. 1–4 следует, что основные 
динамические изменения течений происходят 
при 0 ≤ 𝑡 ≤ 20. 

Изменение поведения поверхностей 
𝑢(𝑡1, 𝑥, 𝑦) и 𝜐(𝑡1, 𝑥, 𝑦) с течением времени пред-
ставлено на рис. 5–9. 

Практически во все положительные моменты 
времени на этих поверхностях хорошо выявля-
ются «вертикальные части», на которых значе-
ния модулей частных производных по про-

странственным переменным принимают доста-
точно большие значения. 

При увеличении времени поверхности 
𝑢(𝑡1, 𝑥, 𝑦) и 𝜐(𝑡1, 𝑥, 𝑦) стремятся к некоторым 
«предельным» положениями (см. рис. 9). 

Далее, на рис. 10, 11 в разные моменты вре-
мени приведены мгновенные линии тока. 

Фактически до моментов времени порядка 
𝑡 = 10 ÷ 20 невозможно понять возникающую 
конфигурацию течения. И только начиная со 
времени порядка 𝑡 = 30 ÷ 50, можно высказы-
вать предположения об итоговом характере те-
чения.  
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Рис. 5. Поверхности 𝑢(𝑡1, 𝑥, 𝑦), 𝜐(𝑡1, 𝑥, 𝑦) в момент времени 𝑡 = 0 

 

 
Рис. 6. Поверхности 𝑢(𝑡1, 𝑥, 𝑦), 𝜐(𝑡1, 𝑥, 𝑦) в момент времени 𝑡 = 20 

 
 

 
Рис. 7. Поверхности 𝑢(𝑡1, 𝑥, 𝑦), 𝜐(𝑡1, 𝑥, 𝑦) в момент времени 𝑡 = 30 

 
 

 
Рис. 8. Поверхности 𝑢(𝑡1, 𝑥, 𝑦), 𝜐(𝑡1, 𝑥, 𝑦) в момент времени 𝑡 = 40 
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Рис. 9. Поверхности 𝑢(𝑡1, 𝑥, 𝑦), 𝜐(𝑡1, 𝑥, 𝑦) в момент времени 𝑡 = 200 

 
Общее движения потока в этом варианте 

оказалось следующим. Имеется два вертикаль-
ных потока. Поток в левой части течения идет 
снизу вверх; в правой части – сверху вниз. В 
результате их взаимодействия сами потоки ча-
стично изменяют направления движения. С уче-
том направлений линий тока в четырех углах, 
приведенных на рис. 10, 11, можно предполо-
жить общее окружное движение вокруг цен-
тральной области, оно идет по ходу часовой 
стрелки. В центральной области образуется не-
сколько вихревых областей – до пяти штук. Но 
с течением времени фактически остается три 
вихревых области. Два самых верхних и два 

самых нижних вихря вращаются по ходу часо-
вой стрелки. Вихрь в центральной части враща-
ется против хода часовой стрелки. Линии тока 
этого центрального вихря соприкасаются с ли-
ниями тока двух верхних и двух нижних вра-
щающихся потоков. Поэтому их направления 
движения соответствует вращению в разные 
стороны зацепленных шестеренок, что и отра-
жает свойство вязкости газа. А пары вращаю-
щихся областей в верхней и нижней частях 
вращаются в одну сторону потому, что не име-
ют соприкасающихся линий тока, а разделяются 
между собой только точечной областью (точки 
A, B на правой части рис. 11). 

 

 
Рис. 10. Мгновенные линии тока при 𝑡 = 0 и 𝑡 = 20 

 

 
Рис. 11. Мгновенные линии тока при 𝑡 = 40 и 𝑡 = 60 
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По результатам расчетов этого варианта сде-
лан фильм1.  

Число слагаемых в тригонометрических 
суммах (9) взято 𝐾 = 300, начальные распреде-
ления искомых функций имеют следующий 
вид:  

𝑢(0, 𝑥, 𝑦) = 0.1 sin(4𝑥) + 0.1 sin(2𝑦), 
𝜐(0, 𝑥, 𝑦) = 0.1 sin(2𝑥) + 0.1 sin(4𝑦). (14) 

На рис. 12, 13 в разные моменты времени 
приведены мгновенные линии тока. 

Как и в других вариантах, фактически до 
момента времени порядка 𝑡 = 10 ÷ 20 невоз-
можно понять возникающую конфигурацию 
течения. И только начиная со времени порядка 
𝑡 = 30 ÷ 50, можно высказать предположение 
об итоговом характере течения.  

 

Результаты расчета варианта 4-2-2-4 
 

Общее движение потока в варианте 4–22–4 
оказалось следующим. С течением времени в 
потоке образуется много вихревых областей. В 
центральной части четко выделены четыре 
ячейки, в которых вращение идет в соответ-
ствии с направлением вращения зацепленных 
шестеренок. В верхней и нижней ячейках вра-
щение идет против хода часовой стрелки, а в 
левой и правой – по ходу часовой стрелки. 
Ячейки, в которых вращаются потоки, имеют 
четко выраженную ромбоидальную форму.  

По результатам расчетов этого варианта сде-
лан фильм2. 

 

 
Рис. 12. Мгновенные линии тока при 𝑡 = 0 и 𝑡 = 60 

 

 
Рис. 13. Мгновенные линии тока при 𝑡 = 120 и 𝑡 = 300 

 
__________________________ 

 
1 Баутин С.П., Карелина О.А., Обухов А.Г. Результаты расчета варианта 3-3-5-5 для системы уравнений движе-

ния. [Электронный ресурс]. URL: https://vk.com/video-71669107 456239195 (дата обращения: 30.08.2023). 
2 Баутин С.П., Карелина О.А., Обухов А.Г. Результаты расчета варианта 4-2-2-4 для системы уравнений движе-

ния. [Электронный ресурс]. URL: https://vk.com/video-71669107 456239196 (дата обращения: 27.09.2023). 
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Результаты расчета варианта 5-5-5-5 
 
Число слагаемых в тригонометрических 

суммах (9) взято 𝐾 = 300, начальные распреде-
ления искомых функций имеют следующий 
вид:  

 
𝑢(0, 𝑥, 𝑦) = 0.1 sin(5𝑥) + 0.1 sin(5𝑦), 

 
𝜐(0, 𝑥, 𝑦) = 0.1 sin(5𝑥) + 0.1 sin(5𝑦). 

 
(15) 

 
На рис. 14–15 в разные моменты времени 

приведены мгновенные линии тока.  
Общий факт: фактически до момента време-

ни порядка 𝑡 = 10 ÷ 20 невозможно понять 
возникающую конфигурацию течения. И только 
начиная со времени порядка 𝑡 = 30 ÷ 50, мож-
но высказать предположение об итоговом ха-
рактере течения.  

Общее движение потока в варианте 5-5-5-5 
оказалось следующим. Картина течения анало-
гична картине варианта 2-4-4-2, но имеется со-
рок штук ромбоидальных областей. В соседних 
соприкасающихся потоках направление враще-
ния определяется по правилу зацепленных ше-
стеренок.  

По результатам расчетов этого варианта сде-
лан фильм1. 

В фильмах2,3 приведены результаты расчетов 
двух других вариантов: 2-3-3-5 и 5-7-9-1. 

Общее движение потока в варианте 2-3-3-5 
оказалось следующим. Имеются четыре гори-
зонтальных потока, и в соседних потоках раз-
ные направления движения газа. Между сосед-
ними потоками образуются застойные зоны. Но 
только между вторым и третьим встречными 
потоками четко образуется одно вращательное 
движение в положительном направлении. Это 
направление движения полностью определяется 
направлениями прилегающих горизонтальных 
потоков: нижний идет слева направо, а верх-
ний – справа налево. Поэтому движение между 
ними происходит против хода часовой стрелки. 

Общее движение потока в варианте 5-7-9-1 
такое. Имеют место два вертикальных встреч-
ных потока. Левый поток идет снизу вверх, пра-
вый поток – сверху вниз. В застойной зоне об-
разуют один овальный вихрь, вращающийся по 
ходу часовой стрелки. Движение среды в вари-
антах 5-7-9-1 и 2-3-3-5 практически топологиче-
ски одинаковое: при повороте одного потока на 
прямой угол получается картина движения, 
очень похожая на движение в другом потоке. 

Особо подчеркнем, что во всех описанных 
потоках четко прослеживается влияние вязко-
сти газа на направления вращения газа в сопри-
касающихся областях. 

 
 

 
Рис. 14. Мгновенные линии тока при 𝑡 = 0 и 𝑡 = 30 

 

__________________________ 

 
1 Баутин С.П., Карелина О.А., Обухов А.Г. Результаты расчета варианта 5-5-5-5 для системы уравнений движе-

ния. [Электронный ресурс]. URL: https://vk.com/video-71669107 456239197 (дата обращения: 27.09.2023). 
2 Баутин С.П., Карелина О.А., Обухов А.Г. Результаты расчета варианта 2-3-3-5 для системы уравнений движе-

ния. [Электронный ресурс]. URL: https://vk.com/video-71669107 456239194 (дата обращения: 27.09.2023). 
3 Баутин С.П., Карелина О.А., Обухов А.Г. Результаты расчета варианта 5-7-9-1 для системы уравнений движе-

ния. [Электронный ресурс]. URL: https://vk.com/video-71669107 456239198 (дата обращения: 27.09.2023). 
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Рис. 15. Мгновенные линии тока при 𝑡 = 60 и 𝑡 = 90 

 
ЗАКЛЮЧЕНИЕ 

 
В данной работе приведены примеры кон-

кретных приближенных решений поставленных 
задач Коши при использовании начальных от-
резков тригонометрических рядов. Коэффици-
енты этих начальных отрезков определяются 
при численном решении конечных систем 
обыкновенных дифференциальных уравнений. 
Проанализированы свойства этих решений, ко-
торые описывают течения вязкого теплопро-
водного газа при постоянных значениях плот-
ности и температуры. В том числе выделены 
случаи с несколькими областями, в которых 
имеют место закрученные течения газа, что ха-
рактерно для турбулентных течений. 
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time, for which an infinite system of ordinary differential equations is written. The initial data are specified in the 
form of finite trigonometric sums. Approximate solutions to the stated Cauchy problems are also constructed in 
the form of finite segments of trigonometric series. For various initial data, the work considers specific nonstation-
ary two-dimensional gas flows that are periodic in the spatial variables x, y and analyzes their properties.  

 
Keywords: system of equations of motion, Cauchy problem, trigonometric series, approximate solutions, 

streamlines. 
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