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Рассматривается обобщенное уравнение Герджикова – Иванова. В последние годы это уравнение интен-
сивно изучается, поскольку оно используется для описания распространения импульсов в оптическом волокне. 
В отличие от классического уравнения Герджикова – Иванова, исследуемое уравнение не проходит тест Пенлеве, 
и задача Коши для этого уравнения не решается методом обратной задачи рассеяния. Этот вариант уравнения 
Герджикова – Иванова имеет лишь ограниченное число законов сохранения. С помощью множителей и пря-
мых вычислений в работе построены законы сохранения рассматриваемого уравнения и найдены два закона 
сохранения без ограничений на параметры уравнения. Еще один дополнительный закон сохранения найден 
при дополнительном ограничении на параметры уравнения. В работе также получены первые интегралы для 
обыкновенных дифференциальных уравнений в результате редукции законов сохранения к переменным бегу-
щей волны в обобщенном уравнении Герджикова – Иванова. Найдены аналитические решения рассматриваемого 
уравнения. Точные решения обобщенного уравнения Герджикова – Иванова представлены в форме оптических 
солитонов, а также через эллиптические функции Якоби. Используя вспомогательные интегралы, вычислены 
сохраняющиеся величины для оптического солитона. Консервативные плотности соответствуют физическим 
величинам: мощности, момента и энергии. Полученные сохраняющиеся величины имеют практическую пользу 
при численном и нейросетевом моделировании процессов распространения импульсов в оптическом волокне.
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ВВЕДЕНИЕ

В связи с необходимостью решения задач пе-
редачи информации на большие расстояния в по-
следние десятилетия появился большой интерес  
к исследованию математических моделей распро-
странения импульсов в нелинейно-оптических 
средах [1 – 3]. Основным уравнением, использу-
емым для математической модели описания оп-
тических солитонов [4 – 6], является нелинейное 
уравнение Шредингера 

i qt+ a qxx+ b |q|2 q = 0,                 (1)

где q (x, t) – комплекснозначная функция; i2 = –1;  
x и t – пространственная и временная координаты, 
соотвественно; a и b – действительные параметры 

математической модели. Уравнение описывает 
огибающую волнового пакета в среде с диспер-
сией и кубической нелинейностью. Известно, что 
нелинейное уравнение Шредингера принадле-
жит классу интегрируемых уравнений, для него 
найдены пара Лакса, преобразования Бэклунда  
и многосолитонные решения [7, 8]. Также оно 
имеет бесконечное количество законов сохране-
ния.

Однако классического нелинейного уравне-
ния Шредингера оказалось недостаточно для 
описания процессов распространения им-
пульса в оптическом волокне. В последние 
годы для описания оптических импульсов на 
большие расстояния предложен ряд новых 
математических моделей, учитывающих такие 
физические процессы, как влияние дисперсии 



ЗАКОНЫ СОХРАНЕНИЯ, ПЕРВЫЕ ИНТЕГРАЛЫ И КОНСЕРВАТИВНЫЕ ПЛОТНОСТИ  
ОБОБЩЕННОГО НЕЛИНЕЙНОГО УРАВНЕНИЯ ГЕРДЖИКОВА – ИВАНОВА

– 381 –

высокого порядка, сложных зависимостей 
коэффициентов преломления и ряда других 
факторов [9 – 12]. Все эти уравнения не относятся 
к классу уравнений, интегрируемых методом 
обратной задачи рассеяния и, как правило, имеют 
три или менее законов сохранения. Законы 
сохранения некоторых математических моделей, 
описывающих распространение импульсов  
в оптических средах, можно найти в работах 
[13 – 17].

В данной работе изучается возмущенное 
уравнение Герджикова – Иванова [18]

( ) ( )
4 2 *

2 2

 | |  
  | |  | |  ,

t xx x
m m

x xx

iq aq b q q i cq q
i q q q q q

+ + + =
 = a + l + m 

     (2)

где q (x, t) – комплекснозначная функция; x и t – 
пространственная и временная координаты соот-
ветственно; i2 = –1, a, b, c, a, l, m – действительные 
параметры математической модели.

Уравнение (2) является одним из широко 
известных нелинейных уравнений в частных 
производных, использующихся при описании 
оптических солитонов в оптоволокне. Уравнение 
не проходит тест Пенлеве, задача Коши для этого 
уравнения не решается методом обратной задачи 
рассеяния в общем случае. Лишь только при 
значениях параметров a = l = m = 0 уравнение (2) 
является интегрируемым, что показано в работах 
[19 – 21].

Цель данной работы – исследование обобщен-
ного уравнения Герджикова – Иванова (2).

В данной работе применительно к уравнению 
(2) поставлены следующие задачи: 

1) найти законы сохранения прямыми вычис-
лениями для исследуемого уравнения; 

2) построить первые интегралы для обобщен-
ного уравнения, используя законы сохранения; 

3) получить точные решения рассматриваемого 
уравнения; 

4) вычислить сохраняющиеся величины для 
соответствующих решений. 

Результаты работы представлены в следую-
щем порядке. В разд.  1 показан алгоритм по-
строения законов сохранения, и найдены три 
закона сохранения для обобщенного уравнения 
Герджикова – Иванова. В разд. 3, используя 
найденные для уравнения законы сохранения, 
получены первые интегралы уравнения в пе-
ременных бегущей волны. В разд. 3 представ-
лены некоторые точные решения для обоб-
щенного уравнения Герджикова – Иванова.  
В разд. 4 вычислены сохраняющиеся величины 
оптического солитона исследуемого уравнения.

1. ЗАКОНЫ СОХРАНЕНИЯ  
ДЛЯ ОБОБЩЕННОГО УРАВНЕНИЯ 

ГЕРДЖИКОВА – ИВАНОВА

Законы сохранения являются одной из 
важнейших характеристик нелинейных 
эволюционных уравнений [22 – 25]. Они позво-
ляют оценить некоторые сохраняющиеся 
характеристики математических моделей [26 – 29]. 
Также известно, что законы сохранения отражают 
свойство интегрируемости нелинейных уравнений 
в частных производных [30 – 32]. Так, уравнения  
в частных производных, интегрируемые методом 
обратной задачи рассеяния, такие как, например, 
уравнение Кортевега-де Вриза

ut + 6 u ux + uxxx = 0                     (3)

и классическое нелинейное уравнение Шредин-
гера (1) имеют бесконечное число законов сохра-
нения.

Существует несколько подходов к нахождению 
законов сохранения нелинейных уравнений  
в частных производных. В статье [33] был приме-
нен гамильтонов формализм для нелинейных 
уравнений Шредингера второго и четвертого 
порядков с использованием формализма Дирака –
Бергмана для построения Гамильтониана. Однако 
законы сохранения для обобщенных нелинейных 
уравнений Шредингера можно искать, используя 
прямые преобразования уравнений, что показано 
в работах [34 – 37]. Данный раздел посвящен 
построению законов сохранения с помощью мно-
жителей и прямых вычислений.

Остановимся на общем определении законов 
сохранения.

Говорят, что уравнение в частных производных 

E (u, ux, ut,…, x, t) = 0                   (4)

имеет n законов сохранения, если оно представ-
лено в виде

0,  1,  ..., ,i iT X i n
t x

∂ ∂
+ = =

∂ ∂                 (5) 

где Ti – плотность; Xi – поток; причем Ti и Xi 
зависят от функции u и ее производных по x и t.

В предположении, что при x → ± ∞ имеем, что 
интегрируя (5) по x от – ∞ до + ∞  выражение (5), 
получим, полагая потоки  Xi = 0, на бесконечности

0i
i i

i
X ddx dx T dx X

t x dt
T+∞ +∞

+∞
−∞

−∞ −∞

∂ ∂
+ = + =

∂ ∂∫ ∫ ∫    (6)
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отсюда 

 const .i iI T dx
+∞

−∞

= =∫                   (7)

Величина (7) называется консервативной 
плотностью. Она не зависит от времени и явля-
ется сохраняющейся величиной.

В данном разделе построим три закона 
сохранения для обобщенного уравнения Герджи-
кова – Иванова используя множители и прямые 
вычисления. Для получения законов сохранения 
уравнение запишем в виде системы, состоящей 
из двух уравнений, а именно уравнения (2) 

( ) ( )
4 2 *

2 2

   | |   
   | |  | |

t xx x
m m

x x x

i q a q b q i c q q
i q q q q

q
q

+ + + =
 = a + l + m 

      (8)

и комплексно-сопряженного к нему в виде

( ) ( )
* * 4 * *2

* 2 * 2 *

  | |   
   | |  | | .

t xx x
m m

x x x

i q a q b q q i cq q
i q q q q q
− + + − =
 = − a + l + m 

   (9)

Построим первый закон сохранения для 
уравнения (8). Для этого умножаем уравнение 
(8) на q*, уравнение (9) на –q, а затем сложим 
полученные уравнения. Результат преобразуем 
к следующему выражению

1 1 0,T X
t x

∂ ∂
+ =

∂ ∂
                      (10)

где T1 и X1 имеют вид 

( )
( ) ( )

2
1

4 2* *
1

2 1 2 1

| | ,

 
2

1 . 2 2  
1 1

x x

m m

T q
cX ia q q qq q q

mq q
m m

+ +

=

= − − + − a −

 −l − − m + + 

  (11)

Для построения второго закона сохранения 
воспользуемся следующим подходом. Умножим 
уравнение (8) на *

xq , а уравнение (9) на qx и затем 
также сложим их. Получаем

( )
( )

( )
( ) ( )

1
2* * * *2

2 * *

  2   

2   .
x x xx xx

m
xx xx

Xq q q q c q q q q q
t x

q q q q q

∂∂
− + + − =

∂ ∂
 = l + m − 

(12)

где (1)
2X имеет вид 

( ) ( )
( )

( ) ( )

2 61 * *
2

2 * *

2 * *

22  
3

2  
2 .

t t x

x x
m

x x

X qq q q ia q ib q

c q qq q q
q qq q q

= − +

−

−

+

+

−

+ l + m −

 (13)

Данный вид не соответствует закону сохранения, 
однако его можно преобразовать к закону 
сохранения. Для этого рассмотрим еще одно 
выражение. Умножим уравнение (8) на q* |q|2k 
и сложим с уравнением (9), умноженным на  
– q |q|2k, где k ∈ . Тогда получим 

	 ( )
( )

( )

2
2 2 2

2 * *

  | |
1
| | 0,

k

k
xx xx

Xi q
k t x

a q q q qq

+ ∂∂
+ +

+ ∂ ∂
+ − =

           (14)

где (2)
2X имеет вид 

( ) ( ) ( )

( )

( )

2 2 2 2 1
2

2 1

2 1

 | |  | |
2 1
2 1   | |

1
2   | | .

1

k k

k m

k m

cX i q i q
k k

mi q
k m

mi q
k m

+ +

+ +

+ +

a
= − −

+ +
+

− l −
+ +

− m
+ +

  (15)

 Затем сложим уравнение (12) с уравнением 
(14) при k = 1 и уравнением (14) при k = m. Резуль-
тат разделим на i и тогда получим второй закон 
сохранения 

	 2 2 0,T X
t x

∂ ∂
+ =

∂ ∂
                   (16)

где T2 и X2 определяются как 

( ) ( )

( ) ( ) ( ) ( )

* * 4 2 2
2

1 2 2
2 2 2 1 2

2  |  | | | ,   
1

2 | 2   | .

m
x x

k k m

T ia q q qq c q q
m

X iaX icX i X

+

= =

l + m
= − − + −

+
= − − + l + m

 (17)

Покажем как для исследуемого уравнения 
получить третий закон сохранения прямыми 
вычислениями. Сначала умножим уравнение (8) 
на *

tq , уравнение (9) на qt и сложим. Получим 

( ) ( )
( )

( ) ( )(
( ) ) ( ) ( )

* * 4 * *

2 * * *2

* * 2 *

2 * 2 * *

  | |
 

  | |
| |  | | .

xx t xx t t t

x t x t
m

x t x t tx
m m

t t tx x

a q q q q b q qq q q
ic q q q q q q

i q q q q q q q
q q q q qq q q

+ + + +
+ − =

= a − + l −
− + m − 

  (18)
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 Рассмотрим случай m = – l Тогда (18) прини-
мает форму 

( ) ( )
( )

( ) ( )

* * 4 * *

2 * * *2

* * 2 * *

 | |
 

 | | .

xx t xx t t t

x t x t
m

x t x t x t x t

a q q q q b q qq q q
ic q q q q q q

i q q q q q q q q q

+ + + +
+ − =

= a − + l −  

(19)

На следующем шаге уравнение (19) запишем 
в виде

Рассмотрим выражение

( )
( )

( )

( ) ( )

( )( ) ( ) ( )

( )

( )( ) ( )( )

2 * *
3, 3,

2 * * *

2 * * * *

3
2 2 2 *

3

2 2 2 2

2 *

22 2 2

| |

| |

 | | 2 3 

| | | | 3 | |

| | | | | |  | |

3 | |

 | | | | | |
2

x x

xx xx x x

xx xx x x x x

x x

xx x xx

x x

xx x

ac q q q qq

ac q q q qq q q
x

ac q q q qq q q q q
x

ac q q ac q q q
xx

ac q q ac q q
x

ac q q q
x

acac q q q
x x

+ =
∂

= + − =
∂

∂
= + + − =

∂
∂ ∂

= − =
∂∂

∂
= − −

∂
∂

− =
∂

∂ ∂ = −
∂ ∂

( )2 *3 | | .x xac q q q
x

 − 
 

∂
−

∂

 (24)

Преобразуем уравнение (23), используя 
(14) при значениях k = 1, k = 2 и k = m + 1 а также 
полученное выражение (24): 

( )
( )( ) ( )( )

( )
( )

( )

( )( )
( )

2 * *

22 2 2

2 * 8

2 2
26

2 2

24
2 1

2 2

| |

| | | | | |
2
53 | | | |
4

  | |   |
3 

| |  |
2

| |
1 2

xt xt

xx x

x x

k

k

m

ic q q q qq
acac q q q

x x

ac q q q bc q
x x

c i cq X
t a x a

c i cq X
t a x a

c q
t a m m

=

=

+

− =
∂ ∂  = − + + ∂ ∂  

∂ ∂  + − + ∂ ∂  
∂ ∂   + −   ∂ ∂   
∂ a ∂ a   + − +   ∂ ∂   
∂ l+  +

+

∂ +

( )
( )

( ) ( )

2
2 1

2 1 * *

|
1

| | .
1

k m

m
x x

i c X
x a m
i cm q q q qq

x m

= +

+

 −


∂ l − + ∂ + 
∂ l + − ∂ + 

Следующим шагом умножим уравнение (8) на 
*23 | | xc q q , а уравнение (9) на 3 c |q|2qx, сложив их, 

получим

( )( ) ( )

( )

( ) ( )

( ) ( )

6
* * 2

2 * * *2

2 * * *2 2 * *

* * * *

1
2

 | |  | |
3

   
2

   | |   
2

         
2 2

 
2 ( 1)

x t x t x

t t

x x xt xt

t t x x

m

b qa q q q q a q
x t t

i c q q q q qq
x

i c q q q q qq ic q q q q q
t

i iq q q q q q q q
x t

i q
x m

+

∂ ∂ ∂  + − + + ∂ ∂ ∂  
∂  + − + ∂  

∂  + − + − = ∂  
∂ a ∂ a   = − + − +   ∂ ∂   

∂ l
+

∂ +
( )( ) ( ) ( )( )

( ) ( ) ( )( )( )

1 1* * 1

1 11 * * 1
2

  

  .
2 ( 1)

t

m m m
t

m mm m
x x

q q q

i q q q q
t m

+ + +

+ ++ +

 − + 
 

∂ l + − ∂ + 

(20)

 Уравнение (20) можно представить в виде

( )

( )
( )1 1

2 * *3 3| | 0,xt xt
T Xic q q q qq

t x
∂ ∂

+ − + =
∂ ∂

   (21)

где (1)
3T  и (1)

3X

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

6 2
(1) 2 * *

3

2
* * * *

2
(1) * * * *
3

2
* * * *

| |   | || |   
3 2

 | |    ,
2 2 1

| |  
2

 | |  .
2 2 1

x x x

m

x x x x

x t x t t t

m

t t t t

b q i c qT a q q q q q

i i qq q q q q q q q
m

ic qX a q q q q qq q q

i i qqq q q qq q q
m

= − − − −

a l
− − −

+

= + + − −

a l
− − − −

+

(22)

Далее дифференцируем уравнения (8) и (9) по
переменной x, затем умножаем первое получив-
шееся выражение на c |q|2 q*, а второе на c |q|2 q. 
Получим 

( ) ( )
( ) ( )

( )
( )

( )
( ) ( )( )

2 * * 2 * *
  3, 3,

8 2 4 * *

2 * *

2 1
* *

2 1 * *

| |  | |  
5     | |  |    
4

| |    

   | |   
1

  | |   .

|

1

x t x t x x

x x

x x

m

x x

m
x x

ic q q q q q ac q q q qq

bc q i c q q q q q
x x

i c q q q q q
x

i c q q q qq
m x

i cm q q q q q
m x

+

+

− + +
∂ ∂

+ + − =
∂ ∂

∂
= a − +

∂
l ∂

+ − +
+ ∂

l ∂
−+

∂

+

+

(23)

–

(25)
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( ) ( )

( )

( )

2 * * 2 *

8 2 4 * *

2
4 * *

3 | | 3 | |

3 3| |  | |
4 2

3  | |   0.
2

t x x t x x

x x

x x

ic q q q q q ac q q q
x

bc q ic q q q qq
x x

ic q q q qq
x

∂
− + +

∂
∂ ∂ + + − − ∂ ∂ 

∂  − − = ∂  

     (26)

Преобразуем (26), используя выражение (14) 
при k = 2:

( )

( )

( )

( )

( )

2 *

2 * *

2 * *

2
8 6

2
2

2 2

2
4 * *

3 | |

3  | |
4
3 | |  
4

3 | |  | |
4 2

3 |
2

3 | | .
2

x x

x x

t t

k

x x

ac q q q
x

ic q q q qq
t

ic q qq q q
x

cbc q q
x t a

ic X
x a
ic q q q qq

x

=

∂
=

∂
∂  = − + ∂  
∂  + − − ∂  

∂ ∂   − − +   ∂ ∂   
∂  + + ∂  

∂  + − ∂  

      (27)

Подставляя (27) в (25) получаем

( )
( ) ( )2 2

2 * * 3 3| | ,xt xt
T Xic q q q qq

t x
∂ ∂

− = +
∂ ∂

    (28)

где  ( )2
3T  и ( )2

3X  определяются как 

( )( )
( )

( )

( ) ( )( )
( ) ( )

( )
( )

( ) ( )

( )

2
(2) 6 4

3

2 2

2 * *

2(2) 2 2 2
3

2
2 28

2 2 2 1

2
2 1

2 1 * *

2 * *

2

| |  | |
6 2

 | |
1 2

3 | | ,
4
| | | | | |

2
12 | | | |
2

 |
1

 | |
1
3 | |  
4

3

m

x x

xx x

k k

k m

m
x x

t t

c cT q q
a a
c q

a m m

ic q q q qq
acX ac q q q

ic i cbc q X X
a a

i c X
a m

i cm q q q qq
m

ic q q q q

ic

+

= =

= +

+

a
= − + +

l
+ +

+ +

+ −

= − + −

a
− +

l
− +

+
l

+ − +
+

+ − +

− −

+ ( )4 * *| | .  
2 x xq q q qq−

 (29)

Затем подставляем (28) в (21) и после домно-
жения на a получаем третий закон сохранения 
при m = – l в форме 

	 3 3 0,T X
t x

∂ ∂
+ =

∂ ∂
                     (30)

где T3 и X3 имеют вид 

( )( )
( )

( )

( ) ( ) ( )
( ) ( )

2
2 26 4

3

6
2 * * 2 2

2 
* * * *

1 2
3 3 3

  | | | |  | |
6 2 1 2

1 | | | |   
4 3
  | |   ,  
2 2 1

.

| |

m

x x x

m

x x x x

c c cT q q q
m m
ab qiac q q q q q a q

i a ia qq q q q q q qq
m

X aX aX

+a l
= − + + +

+ +

+ − + − −

a l
− − − −

+
= +

(31)

В результате при построении второго и третье-
го законов сохранения требуется большее количе-
ство шагов, чем для многих других обобщенных 
уравнений Шредингера, поскольку в процессе 
построения законов сохранения возникают не-
которые слагаемые, имеющие нетривиальный вид.

2. ПЕРВЫЕ ИНТЕГРАЛЫ,  
СООТВЕТСТВУЮЩИЕ ОБОБЩЕННОМУ 
УРАВНЕНИЮ ГЕРДЖИКОВА – ИВАНОВА

В этом разделе покажем, что, используя законы 
сохранения обобщенных нелинейных уравнений 
Шредингера, можно построить первые интегралы 
для системы обыкновенных дифференциальных 
уравнений, соответствующей уравнениям в част-
ных производных [38]. Суть метода заключается 
в следующем.

Рассмотрим нелинейное уравнение в частных 
производных

	 ( ),  ,   , 0.t x xxE q q q q … =              (32)

Если нам известны несколько законов сохра-
нения для уравнения (32), представленные в виде 

	 0,   1,   ...,   ,i iT X i n
t x

∂ ∂
+ = =

∂ ∂
           (33)

где Ti – плотность, а Xi – поток, а также уравне-
ние (32) инвариантно относительно группы пре-
образований сдвига по x и по t, то в (33) делается 
переход к переменным бегущей волны 

	 z = x – C0 t,                          (34)

где C0 – скорость волны.
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Подставляя (34) в уравнение (33), после инте-
грирования получаем следущее выражение 

Ii = Xi (q, qz,…) – C0 Ti (q, qz,…),         (35)

где Ii – произвольная постоянная.
Подставляя комплекснозначную функцию 

уравнения (32) в показательной форме 

q (x, t) = y (z) eiy(z)                    (36)

в уравнение (35), и учитывая соотношения

|q|2 = y2,                            (37)

( )* * 22 ,x x zi q q qq y= − y−               (38)

( )* * 2
02t t zi q q qq C y− = y              (39)

и 
2 2 2 2| ,|x z zq y y= + y                   (40)

находим первые интегралы системы двух обык-
новенных дифференциальных уравнений.

В результате получим первые интегралы для 
системы обыкновенных дифференциальных урав-
нений на функции  y (z) и y(z) 

Xi (y, y, yz, yz,…) – C0 Ti (y, y, yz, yz,…) = Ci, (41)

где Ci – произвольная постоянная.
Построим первые интегралы для системы 

обыкновенных дифференциальных уравнений, 
полученной из обобщенного уравнения Герджи-
кова – Иванова (2). Для построения первых инте-
гралов в законах сохранения (10) и (16) делаем 
переход к переменным бегущей волны (34).

Подставляем (11) в (41), учитывая (36) и (34). 
Получаем первый интеграл в виде

( )

2 4 2

2 1 2
0 1

12 2
2 1

2  ,
1

z

m

cay y y
m

m y C y C
m

+

 y + − a − l − − + 

− m − =
+



     (42)

где 1C  – произвольная постоянная.
Подставляя (17) в (41), и учитывая (36) и (34), 

получаем первый интеграл вида

где 2C  – произвольная постоянная.
Выражая yz  из (42) и сделав замену 1

1 ,
2

CC =


 
имеем 

( )
( )

20

2 1
2

2 4
2 1  2 .

2 1

z

m

C c y
a a

m m Cy
a m ay

+ a
y = − +

+ l + m + + + 

        (44)

Подставляя yz из (44) в (43) и принимая во 
внимание замену

( )1 0 2
2 ,

2 4
C C CC

a a
 + a 

= − + 
 



получим

( ) ( )

( ) ( )( )

( ) ( )

( )

2 2 2 2 2 4

2 2 4
0

2 6 2 20

2 4

4 2
2

2 2 4
4  

2 2
3 1

2 2 2 12  
2
22  ,

2 1

z z z
m

z

m

m

m

a y a y acy
ay c C y

Cab c y y
m

m mc y
m

m y C
m

+

+

+

+

− − y − y +
+ l + m y + + a +

a + l + m
− + − +

+
l + + m +

+ −
+

 − l + m l + m = 
 

−

+


(43)

( )
( )

( )( )

( )

( )

22
2 20 01

2 2
4 60 1

2

2 4 21 1

2 20

2 2 2 2 2

2

3
2 8 8 4 4

5  
8 8 6 962

5 6 22
2 1 8  1 2

4 1
4 4 2

8 (1 ) 1 2

z

m m

m

C CcCa y y
a a a a

C c Cc b cy y
a a aay

c m mC C y y
m a a m m

C y
a m

m m m
a m m

+

+

aa 
+ + + + + 

 
a   + + + + −      

l + m + ll + m   − +   + + +   
l + la + − + 

m + lm − l − l
−

+ +

−

 



2 4
2 0.my C+ − =



Решение уравнения (45) найти затруднитель-
но и по-видимому оно не имеет общего решения, 
однако можно найти некоторые точные решения 
при ограничениях на параметры уравнения.

3. ТОЧНЫЕ РЕШЕНИЯ ОБОБЩЕННОГО 
УРАВНЕНИЯ ГЕРДЖИКОВА – ИВАНОВА

В этом разделе проиллюстрируем построение 
некоторых точных решений для обобщенного 
уравнения Герджикова – Иванова (2). Для этого 
используем первый интеграл (45).

(45)

+
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Рассмотрим случай m = 1. Запишем первый 
интеграл (45) при m = 1 в следующей форме 

2 2 2
2 6

2
40 0 01

22
20 1 1 1

22

5 7
2 6 96 24 24 32 48 8

3
8 8 8 8 4 8

0.
4 8 4 2 2

z
a b c c cy y

a a a a a a
C c C CcCc y

a a a a a a
C C C Cy C

a a a a ay

lm m l l m + − − − + + + + 
 

la la  + + + + + + +    
a l ma + + − − + − =



(46)

Используя замену 

( ) ( ) , y z V z=                       (47)

в уравнении (46), имеем уравнение 

2
2 4 3 2 2 1

1 1 1 2

8 4 0,z
C CV AV BV E V V
a a

+ + − − + =  (48)

где A1, B1 и E1 определяются следующим выра-
жением 

2 2 2

1 2 2 2 2 2 2

0 0
1 2 2 2 2

2 2
0 0 1 1 1

1 2 2 2 2 2 2

4 5 7 ,
3 12 3 4 3 6

,

2 2 4 6 .

b c c cA
a a a a a a

C c CcB
a a a a
C C C C cCE
a a a a a a

m l lm l m
= − − + − + +

la la
= + + +

a l ma
= − − − + + −

 (49)

 Полагая C1 = 0 и C2 = 0 решение уравнения (46) 
имеет вид уединенной волны

( )

( )( )
1 0

1 0

1
2

1 1 1

4  e( ) ,
4 e

E z z

E z z

EV z
A E B

−

−
=

+ +
       (50)

где z0 – произвольная постоянная.
Тогда решение y1(z) записывается как 

	
( )

( )( )
1 0

1 0

1/2

1
1 2

1 1 1

4  .)
4

(
E z z

E z z

E ey
A E B e

z
−

−

 
 =
 + + 

     (51)

Оптический солитон q1(x,t) для обобщенного 
уравнения Герджикова – Иванова (2) в таком слу-
чае имеет вид 

( )
( )

( )( )
( )

1 0 0

1 0 0

0

1/2

1
1 2

1 1 1

4  e,
4 e

e .

E x C t z

E x C t z

i x C t

Eq x t
A E B

− −

− −

y −

×

×


 

=
 + + 

    (52)

 Функцию y(z) можно выразить в явном виде. 
Она имеет вид

( )
( )1 0

1
1

1 1 1

0

e2 3
2 2

 .
2

E z z Bcz
a A A E

C z
a

− +m + l −  y = + 
  

+ a + 
 

    (53)

График решения (51) демонстрируется на рис. 1 
при значениях z0=3.0, A1=1.0, B1=2.0 и E1=5.0.

Общее решение уравнения (46) можно вы-
разить через эллиптические функции Якоби. 
Известно, что решение уравнения (46) можно 
представить через эллиптический синус или 
через функцию Вейерштрасса. Запишем общее 
решение при C1 ≠ 0 и C2 ≠ 0 уравнения (46) в виде 

Рис. 1.  Решение y1(x, t) при z0 = 3.0, A1 = 1.0, B1 = 2.0 и E1 = 5.0 

( ) ( ){ } ( )
( ) ( ){ }

1/22
1 4 2 1 0 1 4 2 1

2 2
4 2 1 0 1 2 1

;)  ( ,
; 

V V V sn S z z k V V Vy
V V sn S z

z
z k V V

− − + − 
=  − − + − 

(54)

×

.

,
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где z0 – произвольная постоянная, V1, V2, V3 и V4 
корни следующего уравнения 

( )( )( )( )

2
4 3 2 2 1

1 1 1 2

1 1 2 3 4

8 4

0,

C CAV BV E V V
a a

A V V V V V V V V

+ − − + =

= − − − − =
 (55)

S1 и k1 определяются как 

( )( )1 1 4 3 2 1
1 ,
2

S A V V V V= − −            (56)

( )( )
( )( )

3 1 4 2
1

4 3 2 1
.V V V Vk

V V V V
− −

=
− −                 (57)

Периодическое решение q2 (x, t) для  обобщен-
ного уравнения Герджикова – Иванова (2) при 
m = 1 находится по формуле (36), используя (54).

Решение (54) представлено на рисунке 2 при 
z0 = 1.0, A1 = 1.0, V1 = 1.0, V2 = 3.0, V3 = 2.0 и V4 = 4.0.

Далее рассмотрим случай m = 2.
Уравнение (45) при m = 2 принимает форму

2
2 1

2 2

22
20 01

40 1 1

2
60

8

2 2
10

2 2
3
4 8 4 8

8 8 3 6
5

6 96 12 12

8 8
2 2 0.

72 45 45

z
Ca y C
ay

C CcC y
a a a a

C c C Cc y
a a a a

Cb c y
a a a
c c y
a a

y
a a a

− + +

aa 
+ + + + + 

 
m la + + − − + 

 
lla + − + + 

 
l m + + 

 
l lm m



+



+

+ − − =
 

        (58)

 Рассмотрим уравнение (58) при выполнении 
следующих условий 

1
2 0

40,   ,   
3

CC C
c

l
= m = −l = −a −         (59)

и после этого сделаем в нем замену 

	 y = W (z)1/4,                          (60)

тогда получим

2 2 2
2 21 1 1

2 2 2 2

22 2
3 41

2 2 2

16 24 64  
9

16 5 32 4  0.
3 93 9

z
C cC CW W W

a a a c
Cb c W W

a a a c a

l + + + + 
 

l l + − − + = 
 

 (61)

Запишем уравнение (61) в форме 

2 2
2 2 3 41

2 2

16 4 0,
9

W W RW NW W
a a

l
+ − + + =  (62)

где
2 2

1 1
2 2 2

24 64   ,
9

cC CR
a a c

l = − + 
 

            (63)

22
1

2 2

16 5 32  .
3 93

Cb cN
a a a c

l = − − 
 

           (64)

Общее решение уравнения (62) можно пред-
ставить через эллиптический синус в виде

( )
( ) ( ){ }

3 1
2

3 1 2 0 2 1

,
 ; 

W WW z
W W sn S z z k W

=
− − +  (65)Рис. 2.  Решение при z0=1.0, A1=1.0, V1=1.0, V2=3.0,

V3=2.0 и V4=4.0
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где W1, W2, W3 корни уравнения 

2 2
2 31

2 2

16 4 0,
9

C RW NW W
a a

l
− + + =        (66)

а параметры S2 и k2 имеют вид 

( )2 3 2 1  ,
3

S W W W
a

l
= −                (67)

( )
( )

3 1 2
2

3 2 1
.W W Wk

W W W
−

=
−                   (68)

Тогда решение для (58) при условиях (59) 
запишется в виде 

( ) ( ){ }

1/4
3 1

3 2
3 1 2 0 2 2

( ) .
 ;

W Wy
W W sn z z k W

z
S

 
=  − − + 

 (69)

Решение (69) показано на рис. 3 при значениях 
z0 = 1.0; a = 1.0; l = 3.0; W1 = 3.0; W2 = 2.0 и W3 = 4.0.

Если положить C1 = 0 то получим уединенную 
волну для (61) вида 

( )

( )( )
0

0

2

2 2 2 2

36  e( ) .
144 9 e

R z z

R z z

R aW z
Ra Na

−

−
=

l + +
(70)

Выразим решение уравнения (58), которое 
будет иметь вид 

 
( )

( )( )
0

0

1/4
2

4 2 2 2 2

36 e .
144 9 e

( )
R z z

R z z

Ray z
Ra Na

−

−

 
 =
 l + + 

 (71)

Оптический солитон для уравнения (2) ищется, 
используя (71) и (36).

Решение (71) представлено на рис. 4 при 
z0 = 20.0; a = 2,0; l = 4.0; R = 1.0 и N = 2.0.

Также существуют некоторые частные реше-
ния в случае произвольного m для обобщенного 
уравнения Герджикова – Иванова. Они представ-
лены в работе [18]. 

Рис. 4.  Решение y4(x, t) при z0 = 20.0; a = 2.0; λ = 4.0;
R = 1.0 и N = 2.0

Рис. 3 . Решение y3(x, t) при z0 = 1.0; a = 1.0;
λ = 3.0;W1 = 3.0;W2 = 2.0 и W3 = 4.0
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4. КОНСЕРВАТИВНЫЕ ПЛОТНОСТИ  
ОПТИЧЕСКОГО СОЛИТОНА  

ОБОБЩЕННОГО УРАВНЕНИЯ  
ГЕРДЖИКОВА – ИВАНОВА

 Найдем сохраняющиеся величины для обоб-
щенного уравнения Герджикова – Иванова.

Рассмотрим решение (52) и найдем консер-
вативные плотности для него. Для этого разберем 
следующие вспомогательные интегралы:

( )

( )( )
1 0 0

1 0 0

2
1 1

 
1
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1 1 1

1

4 e
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Интегрирование плотности T3 с учетом реше-
ния (52) и выражения для yz дает следущее 
выражение:

Из плотности T1 получаем первую сохраня-
ющуюся велину для решения (52) в виде

2 2
1 1 1 1 1 .I T dx q dx y dx L

∞ ∞ ∞

−∞ −∞ −∞

= = = =∫ ∫ ∫        (76)

 Интегрирование плотности T2 с подставленным 
решением (52) и имеющимся yz дает следущее 
выражение: 

      (77)

(75)
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ЗАКЛЮЧЕНИЕ

 В данной работе исследовано обобщенное 
уравнение Герджикова – Иванова. Представлен ал-
горитм построения законов сохранения методом 
прямых вычислений. Найдено два закона сохра-
нения для исследуемого уравнений без ограниче-
ний на параметры, а также третий закон с одним 
ограничением на параметры уравнения. Постро-
ены первые интегралы системы обыкновенных 
дифференциальных уравнений, соответсвующей 
обобщенному уравнению Герджикова – Ивано-
ва. Найдены решения рассматриваемого урав-
нения в форме оптических солитонов, а также 
через эллиптические функции Якоби. Для опти-
ческого солитона рассчитаны сохраняющиеся 
величины. Полученные законы сохранения и 
консервативные плотности можно использовать 
для численного и нейросетевого моделирования. 
Помимо этого сохраняющиеся величины имеют 
практическую пользу при оценки некоторых ха-
рактеристик, измеряемых при распространении 
импульсов в оптических волокнах.
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The generalized Gerdjikov – Ivanov equation is considered. In recent years, this equation has been intensively 
studied, since this equation is used to describe pulse propagation in optical fiber. Unlike the classical Gerdjikov –
Ivanov equation, the equation under study does not pass the Painlevé test and the Cauchy problem for this equation 
cannot be solved by the inverse scattering method. This version of the Gerdjikov –Ivanov equation has only a limited 
number of conservation laws. Using multipliers and direct calculations, conservation laws for the equation under 
consideration are constructed in this paper and two conservation laws are found without restrictions on the parameters 
of the equation. One more additional conservation law is found under an additional restriction on the parameters 
of the equation. In this paper, first integrals for ordinary differential equations are also obtained by reducing the 
conservation laws to the variables of a traveling wave in the generalized Gerdjikov – Ivanov equation. Analytical 
solutions of the equation under consideration are found. Exact solutions of the generalized Gerdjikov – Ivanov 
equation are presented in the form of optical solitons, as well as through the Jacobi elliptic functions. Using auxiliary 
integrals, conserved quantities for an optical soliton are calculated. Conservative densities correspond to physical 
quantities: power, momentum, and energy. The obtained conserved quantities are of practical use in numerical and 
neural network modeling of pulse propagation processes in optical fiber.

Keywords: Gerdjikov – Ivanov equation, conservation laws, first integrals, exact solutions, optical solitons, 
conservative densities. 
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