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Получены асимптотические оценки для сил взаимодействия топологических солитонов (кинков) 
уравнения Клейна – Гордона с полиномиальной нелинейностью, которое является уравнением 
движения для действительного скалярного поля в лоренц-инвариантной (1 + 1)-мерной модели φ12, 
важной для многих физических приложений. Рассматриваемая модель не является интегрируе-
мой, поэтому в ней отсутствуют точные двухсолитонные решения. Тем не менее, для приложений 
важна динамика системы, состоящей из кинка и антикинка, расположенных на некотором рассто-
янии друг от друга. Такая конфигурация не является решением уравнения движения, однако может 
быть сконструирована из отдельных солитонных решений. Неинтегрируемость модели приводит  
к наличию силы взаимодействия между кинками. В данной работе показано, что во всех слу-
чаях имеет место притяжение, а сила убывает экспоненциально с расстоянием. Для получения 
выражений для силы притяжения использовались асимптотики соответствующих кинковых 
решений, которые в рассматриваемой модели имеют экспоненциальный характер, что, в свою 
очередь, является следствием вида потенциала теоретико-полевой модели, определяющего 
самодействие скалярного поля.
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Введение

 Кинковые решения в теоретико-полевых моделях с одним действительным скалярным полем  
в (1 + 1)-мерном пространстве-времени имеют большое значение для современной физики. Кинки  
и кинкоподобные полевые конфигурации возникают во многих прикладных задачах. Типичным приме-
ром является плоский участок космологической доменной стенки, разделяющей области пространства  
с различным вакуумом: в направлении, перпендикулярном стенке, такая конфигурация представляет 
собой кинк [1, 2]. В теории конденсированного состояния вещества, например, деформация стенки, 
разделяющей два магнитных домена, локально моделируется кинком. Такая деформация может дви-
гаться вдоль стенки подобно кинку некоторой теоретико-полевой модели [3]. Еще одним наглядным 
примером кинковой конфигурации является деформация графеновой наноленты [4]. Кинковые реше-
ния возникают также в моделях, описывающих последовательности фазовых переходов, подробности 
и литературный обзор можно найти в [5], см. также главу 12 в [6]. В частности, модель j12, которой 
посвящена эта статья, использовалась для описания фазовых переходов в сильно пьезоэлектрических 
перовскитных материалах [7, 8].

Наиболее известными моделями с кинковыми решениями, по-видимому, являются интегрируемая 
модель синус-Гордон [9] и неинтегрируемая модель j4 [6]. Интегрируемость модели синус-Гордон по-
зволяет строить точные многосолитонные решения. В модели j4 это невозможно. Тем не менее, модель 



493 

Новые результаты по силам взаимодействия кинков теоретико-полевой модели с полиномиальным  
потенциалом

j4 имеет множество физических приложений и богатую историю изучения динамических свойств ее 
кинковых решений, начиная с 70-х годов прошлого века [10], см. также обзор [11].

В последнее время наблюдается большой интерес к поиску кинковых решений в различных моделях, 
а также к изучению динамики кинк-(анти)кинк и мультикинк взаимодействий. В частности, были из-
учены семейства логарифмических потенциалов [12, 13, 14]; получены точные формулы для кинковых 
решений в полиномиальных моделях [15]; исследованы кинк-(анти)кинк столкновения в различных 
моделях с полиномиальными потенциалами степени шесть и выше [16, 17, 18]; рассмотрены некоторые 
экзотические модели [19, 20, 21], а также рассеяние колеблющихся кинков [22].

Примечательно, что, помимо кинков с экспоненциальной асимптотикой (которыми, в частности, 
являются кинки упомянутых выше моделей синус-Гордон и j4) изучаются кинки с другими асим-
птотиками. В частности, со степенными асимптотиками [15], а также с суперэкспоненциальной [14], 
супер-суперэкспоненциальной [12] асимптотиками и с асимптотикой типа степенной башни [13].

В этой статье рассматриваются кинки j12, имеющие экспоненциальную асимптотику. На основе 
явных формул для кинковых решений получены асимптотические оценки сил кинк-антикинк и анти-
кинк-кинк взаимодействий при больших расстояниях между солитонами.

Теоретико-полевая модель φ12

Рассмотрим теоретико-полевую модель с одним действительным скалярным полем j(x, t) в (1 + 1)-мер-
ном пространстве-времени, динамика которого задается лагранжианом (т.е. плотностью функции Ла-
гранжа)  

	
2 21 1= ( ),

2 2
∂j ∂j   − − j   ∂ ∂   

V
t x

                                                        (1)

где потенциал V(j), определяющий самодействие поля, представляет собой полином двенадцатой сте-
пени специального вида: 

	 ( ) ( ) ( )2 2 22 2 2 2 2 2 2( ) = .j l j − j − j −V a b c                                                  (2)

На вещественные параметры, входящие в потенциал, налагаются условия 0 < a < b < c, l > 0. Конкрет-
ные значения в том или ином случае обусловливаются решаемой физической задачей. Потенциал (2) 
имеет шесть вырожденных минимумов при j = ± a, ± b, ± c, которые разбивают отрезок –c ≤ j ≤ c на 
пять топологических секторов: (–c, –b), (–b, –a), (–a, a), (a, b) и (b, c). Соответственно, в модели имеется 
десять кинковых решений (пять кинков (K) и пять антикинков ( )).K  Заметим, что в силу симметрии 
потенциала асимметричные сектора (–c, –b) и (–b, –a), зеркально симметричны секторам (b, c) и (a, b) 
соответственно.

Уравнение движения, следующее из лагранжиана (1), представляет собой нелинейное уравнение  
в частных производных 

	
2 2

2 2 = 0,∂ j ∂ j
− +

j∂ ∂
dV
dt x

                                                                 (3)

которое часто называют нелинейным уравнением Клейна – Гордона, а соответствующий функционал 
энергии имеет вид 

	
2 21 1[ ] = ( ) .

2 2

∞

−∞

 ∂j ∂j   j + + j    ∂ ∂     
∫E V dx

t x                                                  (4)
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В силу лоренц-инвариантности рассматриваемой теории, можно ограничиться поиском статических 
солитонных решений. В этом случае j = j(x), и с учетом граничных условий порядок уравнения (3) 
можно понизить и получить обыкновенное дифференциальное уравнение первого порядка 

	 = 2 ( ),j
± j

d V
dx

                                                                    (5)

см., например, раздел 5.1 в книге [1].
Далее мы ограничимся следующим конкретным выбором параметров: 

	 5 1 5 1 8 2= , = , = 1, = .
4 4 5
− +

la b c                                               (6)

Тогда кинковые решения во всех топологических секторах могут быть записаны в виде единой формулы 
(подробнее см., например, [23]): 

( ) ( )1( ) = cos arccos tanh .
5 5

π j + 
 K K

sx x                                                  (7)

В этой формуле s пробегает любые десять последовательных целочисленных значений, например, 
s = 0, 1, …, 9. При этом получаются все десять кинков и антикинков модели с потенциалом (2).

Массу кинка (антикинка) в любом секторе можно найти, например, подставив (7) в (4), что для 
набора параметров (6) дает следующие значения: 

	 ( , ) 25 5 109= 0.0785,
2100

− +
≈a a

KM                                                        (8)

 	 ( , ) 109= 0.0519,
2100

≈a b
KM                                                              (9)

 	 ( , ) 93 25 5= 0.0088.
4200
−

≈b c
KM                                                        (10)

Видно, что ( , ) ( , ) ( , )< < −b c a b a a
K K KM M M , т.е. самым тяжелым является кинк в симметричном секторе (–a, a).

Асимптотические оценки сил взаимодействия между кинком и антикинком  
в различных топологических секторах

Так как рассматриваемая теоретико-полевая модель не является интегрируемой, в ней не имеет-
ся точных многосолитонных решений [1]. Тем не менее, кинк и антикинк, находящиеся на большом 
расстоянии друг от друга, удовлетворяют уравнению движения с экспоненциальной (по расстоянию) 
точностью. В то же время нелинейность модели приводит к тому, что между кинком и антикинком 
возникает сила притяжения.
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Для оценки сил притяжения между кинком и антикинком используем асимптотический метод, опи-
санный, например, в разделе 5.2 книги [1]. Идея метода состоит в следующем: импульс конфигурации 
поля j(x, t) на полубесконечном промежутке (–∞, b] есть соответствующая компонента тензора энер-
гии-импульса: 

	 = .
b

−∞

∂j ∂j
−

∂ ∂∫P dx
t x

                                                                   (11)

Тогда сила, действующая на полевую структуру, находящуюся на этом промежутке, определяется как 
производная от импульса по времени: 

	
2 2

2 .
b

−∞

 ∂ ∂ j ∂j ∂j ∂ j
= = − + ∂ ∂ ∂ ∂ ∂∂ 

∫
PF dx
t x t x tt

                                                    (12)

После несложных преобразований с использованием уравнения движения (3) получаем 

	
2 21 1= ( ) .

2 2

b

−∞

 ∂j ∂j   − − + j    ∂ ∂     
F V

t x                                                   (13)

Например, для оценки силы между статическим кинком и антикинком в топологическом секторе
(–a, a) нужно использовать полевую конфигурацию в виде кинка ( , ) ( )−j a a

K x  и антикинка ( , ) ( ),−j a a
K x

расположенных соответственно в точках x = –X и x = X: 

	 ( , ) ( , ) ( , )( ) = ( ) ( ) ,− − −j j + + j − −a a a a a a
KKK Kx x X x X a                                             (14)

где предполагается, что X >> 1 и –X << b << X, следовательно, ( , ) ( )−j − −a a
K x X a  экспоненциально мало 

при x ≤ b и стремится к нулю при X → +∞. Далее, подставляя (14) в (13) и линеаризуя (раскладывая до
первого порядка) по ( , ) ( ) ,−j − −a a

K x X a  получаем: 

( )

( )

( )

2( , )
( , ) ( , )

2( , ) ( , )( , )
( , )

( , )
( , )

( )1= ( )
2

( ) ( )( )1 ( )
2

( ( )) ( ) .

b
−

− −

−∞

− −−
−

b
−

−

−∞

  ∂j − + j ≅  ∂   

  ∂j + ∂j −∂j +≅ − − ⋅ + j + +  ∂ ∂ ∂  

j +
+ ⋅ j − − j 

a a
a a a aKK

KK KK

a a a aa a
K a aK K

K

a a
a aK

K

x
F V x

x

x X x Xx X V x X
x x x

dV x X x X a
d

                 (15)

Эта формула дает оценку силы, действующей на кинк, расположенный в точке x = –X со стороны ан-
тикинка, расположенного в точке x = X.
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С учетом того, что кинк и антикинк удовлетворяют уравнениям (3) и (5), окончательно получаем: 

	 ( )
2 ( , )( , )( , )

( , ) ( , )
2

( )( )( ) ( ) .
b

−−−
− −

−∞

 ∂ j +∂j −∂j +
≅ − + j − − ∂ ∂ ∂ 

a aa aa a
Ka a a aK K

KK K

x Xx Xx XF x X a
x x x

              (16)

Точка b находится далеко и от кинка, и от антикинка, поэтому можно применять асимптотические 
выражения 

	 ( , ) ( )1 5 5( )
5 2

− − ++
j + ≈ −a a x X

K x X a e                                                  (17)

и 

	 ( , ) 1 5 5( ) ,
5 2

− −+
j − ≈ −a a x X

K x X a e                                                   (18)

так что в итоге формула (16) дает 

	 ( , ) 5 5 ,
25

− −+
≅a a R

KKF e                                                                (19)

где введено обозначение R = 2X, т.е. R есть расстояние между кинком и антикинком. Видно, что сила 
притяжения между кинком и антикинком экспоненциально убывает с расстоянием. Отметим также, 
что эта сила не зависит от использованного в расчете вспомогательного параметра b.

Аналогичные расчеты выполнены также для кинк-антикинк (KK) и антикинк-кинк (KK ) взаимо-
действий в других топологических секторах: 

	 ( , ) ( , ) 5 5= ,
25

− −+
≅a a a b R

KK KKF F e                                                         (20)

 	 ( , ) ( , ) 5 5= ,
25

−−
≅a b b c R

KK KKF F e                                                          (21)

 	 ( , ) 232 .
625

−≅b c R
KKF e                                                                   (22)

Как видно, кинк-антикинк и антикинк-кинк притяжение одинаково для симметричных кинков  
в топологическом секторе (–a, a). В то же время кинк-антикинк и антикинк-кинк силы различны для 
асимметричных кинков в секторах (a, b) и (b, c).

Можно также заметить, что полученная выше оценка для силы антикинк-кинк в секторе (a, b) 
совпадает с кинк-антикинк силой в секторе (–a, a), а антикинк-кинк сила в секторе (b, c) совпадает 
с кинк-антикинк силой в секторе (a, b). Это является очевидным следствием использованного при-
ближения, в рамках которого сила полностью определяется асимптотическим поведением кинкового 
решения, которое, в свою очередь, полностью определяется вакуумом, к которому приближается поле.
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Заключение

В этой статье получены асимптотические оценки сил взаимодействия топологических солитонов 
(кинков) (1+1)-мерной модели j12. Рассмотренная теоретико-полевая модель примечательна тем, что 
имеет пять топологических секторов – один симметричный и четыре асимметричных.

Найдены массы и асимптотики всех кинков, а также получены асимптотические оценки силы взаи-
модействия кинка и антикинка, находящихся на большом расстоянии друг от друга. Как и можно было 
ожидать, во всех случаях сила экспоненциально убывает с расстоянием. При этом скорость убывания 
различается в зависимости от асимптотического поведения поля на больших расстояниях от центра 
кинка.

Представленное в данной статье исследование может иметь интересное продолжение. В частности, в 
столкновениях кинков изучаемой модели j12 наблюдались резонансные явления – так называемые окна 
разлета [24]. Их появление означает, что происходит резонансный обмен энергией между кинетической 
энергией кинков и неким «аккумулятором» энергии. Во многих известных случаях роль такого «акку-
мулятора» играла колебательная мода кинка. Однако было показано, что все кинки в рассматриваемой 
модели не имеют колебательных мод [24]. Открытым является вопрос о причине возникновения окон 
разлета, а более конкретно – о поиске «аккумулятора», отбирающего часть кинетической энергии 
кинков при первом их соударении и возвращающего при втором (именно таков механизм резонансного 
разлета солитонов, например, в модели j4, см. обзор [11]).
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New results on the interaction forces of kinks in a field-theoretical model  
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We obtain asymptotic estimates for the interaction forces between topological solitons(kinks) of the 
Klein – Gordon equation with a polynomial nonlinearity. This equation is the equation of motion for 
a real scalar field in the Lorentz-invariant (1 + 1)-dimensional φ12 model, which is important for many 
physical applications. The model under considerationis not integrable, so it lacks exact two-soliton 
solutions. Nevertheless, the dynamics of a system consisting of a kink and an antikink located at some 
distance from each other isimportant for applications. Such a configuration is not a solution to the 
equation of motion, but can be constructed from individual soliton solutions. The nonintegrability of 
the model leads to the presence of an interaction force between the kinks. In this paper, we show that 
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attraction occurs in all cases, and the force decreases exponentially with distance. To obtain expressions 
for the attractive force, we used the asymptotics of the corresponding kink solutions, which in the 
model under consideration have an exponential nature, which, in turn, is a consequence of the type of 
potential of the field-theoretic model that determines the self-interaction of the scalar field.

Keywords: kink, soliton, domain wall, kink-antikink interaction.
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