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Описаны новые классы сильно нелинейных уравнений типа Монжа – Ампера достаточно об-
щего вида, зависящих от одной до шести произвольных функций одного или двух аргументов, 
которые допускают точную линеаризацию в замкнутой форме. Для линеаризации использова-
ны контактные преобразования Эйлера и Лежандра и специальные точечные преобразования 
(включая неклассическое преобразование годографа) их комбинации. Особое внимание уделя-
ется уравнениям Монжа – Ампера, встречающимся в метеорологии и геофизике. Рассматрива-
ются также преобразования эквивалентности отдельных классов уравнений Монжа – Ампера.                                                                                                       
Для некоторых нелинейных уравнений получены точные решения, зависящие от произвольных 
функций. Были также рассмотрены два нестационарных сильно нелинейных уравнений типа 
Монжа – Ампера с тремя независимыми переменными, которые встречаются в электронной 
магнитной гидродинамике и геофизической гидродинамике. Для них в переменных типа бегу-
щей волны были построены двумерные редукции к более простым уравнениям, допускающим 
точную линеаризацию.. 

Ключевые слова: уравнения Монжа – Ампера, сильно нелинейные уравнения с частными 
производными, точная линеаризация в замкнутой форме, преобразования Эйлера и Лежандра, 
преобразование годографа, контактные и точечные преобразования.

Введение

Сильно нелинейные уравнения типа Монжа – Ампера встречаются в дифференциальной геометрии 
[1 – 4], газовой динамике [5, 6], теории упругости [7, 8], магнитной гидродинамике [9], механике двух-
фазных сред [10], метеорологии и геофизике [11, 12], задачах оптимизации [3] и некоторых других при-
ложениях [4, 13]. Качественные особенности, симметрии, преобразования, редукции, промежуточные 
интегралы и точные решения уравнений Монжа – Ампера с двумя независимыми пространственными 
переменными, содержащих квадратичную нелинейность относительно комбинации старших произво-
дных вида 2−xx yy xyu u u , рассматривались во многих работах (см., например, [1, 2, 6, 13 – 19]).

1. Уравнения газовой динамики для плоских одномерных течений с переменной энтропией сводятся 
к неоднородному уравнению Монжа – Ампера [5, 6]: 

	 2 ( , ),− =xx yy xyu u u F x y                                                                 (1)

где u = u(x, y) – искомая функция; F(x, y) – заданная функция. 
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Уравнение (1) с нулевой правой частью называется однородным уравнением Монжа – Ампера.
Общее решение однородного уравнения Монжа – Ампера (1) при F(x, y) = 0 можно записать в пара-

метрической форме [14] (см. также [13, 19]): 

	
( ) ( ),

( ) ( ) 0,
= b + j b + y b

′ ′+ j b + y b =
u x y
x y

                                                             (2)

где b – свободный параметр, а j = j(b) и y = y(b) – произвольные функции.
Отметим, что однородное уравнение Монжа – Ампера (1) при F(x, y) = 0 имеет простое точное решение 

	 ( )1 2 3 4 ,= j + + +u k x k y k x k y

где j(z) – произвольная функция; k1, k2, k3, k4 – произвольные постоянные.
Общее решение неоднородного уравнения Монжа – Ампера (1) при F(x, y) = –a2, где a ≠ 0 – произ-

вольная постоянная, также можно представить в параметрическом виде [14] (см. также [13, 19]): 

	 [ ]( ) ( ) ( ) 2 ( ) 2 ( )( ) ( ), , ,
2 2 4

′ ′b + l y l − j b + j b − y l′ ′b − l y l − j b
= = =x y u

a a a
                 (3)

где b и l – свободные параметры, а j = j(b) и y = y(l) – произвольные функции. Отметим, что урав-
нение (1) при F(x, y) = –a2 является гамильтоновым [20].

Отметим, что неоднородное уравнение Монжа – Ампера (1) при F(x, y) = –a2 имеет два точных ре-
шения, которые можно представить в явном виде 

	
2

2 22 2 2
1 2 1 1 1 2 32

1 11

( ) 2 ,
  = j + + + ± + ± + +  

   

k k ku k x k y C x C a xy C a y C x C y
k kk

где j(z) – произвольная функция; k1 , k2, C1, C2, C3 – произвольные постоянные (k1 ≠ 0); перед a берутся 
либо верхние, либо нижние знаки.

Общие решения (2) и (3) уравнения Монжа – Ампера (1) в указанных специальных случаях можно 
получить путем использования контактного преобразования Эйлера, которое рассматривается далее 
в разд. 1.

Симметрии и инвариантные решения уравнения (1) рассматривались в [16, 21] (см. также [13, 18]).  
В [13, 19] получен ряд неинвариантных решений с обобщенным и функциональным разделением пе-
ременных уравнения (1), правая часть которого зависит от одной или двух произвольных функций 
одного аргумента. В [22, 23] рассматривались точные решения уравнения (1) с квадратичной и более 
сложной полиномиальной правой частью.

Далее описаны два полезных утверждения о преобразованиях эквивалентности неоднородного 
уравнения Монжа – Ампера (1).

Утверждение 1. Преобразование [16, 18]: 

1 1 1 2 2 2 3 3 3
2 2

1 2 2 1 1 2 2 1

, , ,

( ) , 0,−

= + + = + + = + + +

= − − ≠

x a x b y c y a x b y c u ku a x b y c

F k a b a b F a b a b

где a1, a2, a3, b1, b2, b3, c1, c2, c3, k – произвольные постоянные, преобразует неоднородное уравнение 
Монжа – Ампера (1) в уравнение аналогичного вида.
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Утверждение 2. Преобразование [16, 18]: 

1 1 1 4(1 ) , (1 ) , (1 ) , (1 ) ,− − −= + α + b = + α + b = + α + b = + α + bx x x y y y x y u u x y F F x y

где a, b – произвольные постоянные, преобразует неоднородное уравнение Монжа – Ампера (1)  
в уравнение аналогичного вида.

В [16, 24] (см. также далее разд. 1 и 3) показано, что уравнение (1) может быть линеаризовано  
в следующих двух случаях: 

	 4
1 21) ( , ) ( ); 2) ( , ) ( / ),−= =F x y f x F x y x f y x                                            (4)

где  f1(x) и  f2(z) – произвольные функции.
Из утверждения 1 и выражений (4) следует, то уравнение (1) линеаризуется также для более общих 

функций 

		  1 1 1 11) ( , ) ( );= + +F x y f a x b y c                                                                          (5)

		  2 2 2
24

1 1 11 1 1

12) ( , ) ,
( )

+ + =  + ++ +  

a x b y cF x y f
a x b y ca x b y c                                           (6)

где  f1(z1) и  f2(z2) – произвольные функции, a1, a2, b1, b2, c1, c2 – произвольные постоянные; при a1b2 – a2b1 = 0 
функция (6) сводится к (5).

Отметим, что квадратичное относительно старших производных уравнение (1) является сильно 
нелинейным и имеет свойства, необычные для квазилинейных уравнений, которые линейны отно-
сительно старших производных. В частности, качественные особенности этого уравнения зависят от 
знака функции F = F(x, y), поскольку при F < 0 уравнение (1) является уравнением гиперболического 
типа, а при F > 0 – уравнением эллиптического типа [2, 13]. Кроме того, при F > 0 задача Дирихле для 
этого уравнения с нулевым условием на границе имеет не единственное решение.

2. В [13] было показано, что уравнение Монжа – Ампера 

2 ( ),− =xx yy xyu u u f u

в правой части которого стоит произвольная функция  f(u), допускает точное решение с функциональ-
ным разделением переменных вида 

2 2
1 2 3 4 5= ( ), = ,+ + + +u U z z C x C xy C y C x C y

где C1, …, C5 – произвольные постоянные, а функция U(z) описывается обыкновенным дифференци-
альным уравнением 

2

2 2 2
1 3 2 1 5 3 4 2 4 5

2( ) ( );
4 , .

+ + =

= − = + −
z zz zAz B U U AU f U

A C C C B C C C C C C C

При A = 0 общее решение этого уравнения можно выразить в квадратурах в неявном виде.
3. В общем случае уравнение Монжа – Ампера с двумя независимыми переменными имеет вид 

	 ( )2
1 2 3 4 5 0,− + + + + =xx yy xy xx xy yyF u u u F u F u F u F                                            (7)
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где F1, F2, F3, F4, F5 – гладкие функции, зависящие от x, y, u, ux, uy, причем 1 0≡F . Уравнения этого 
типа встречаются, например, в дифференциальной геометрии [1, 2], метеорологии и геофизике [11]  
и теории конечно деформированных несжимаемых упругих материалов [7, 8] (при F2 = F3 = F4 = 0). 
Точные решения некоторых таких и других сильно нелинейных уравнений, содержащих квадратичные 
комбинации старших производных, можно найти в [13, 19].

Тип сильно нелинейного уравнения (7) зависит от знака дискриминанта [2]: 

	 ( )2 2
3 2 4 5 14 4 ,−D = − +F F F F F                                                            (8)

который не содержит вторых производных uxx, uxy, uyy. При D > 0 уравнение (7) будет гиперболическим, 
при D < 0 – эллиптическим, а при D = 0 – параболическим.

Отметим, что уравнения Монжа – Ампера вида (7) при F1 = 1, F2 = F3 = F4 = 0 и F5 = F5(x, y, u, ux, uy ) < 0 
могут иметь не единственное решение задачи Дирихле для замкнутой выпуклой области [25].

4. Стационарное неоднородное уравнение Монжа – Ампера с квадратичной нелинейностью по стар-
шим производным (1) допускает многомерное обобщение на случай произвольного числа простран-
ственных переменных 

	 det ( ),=  i jx xu F x                                                                     (9)

где x = (x1, …, xn  ) и 
i jx xu – вторая производная искомой функции u по переменным xi и xj. Матрица вто-

рых производных   i jx xu , входящая в это уравнение, описывает локальную кривизну функции многих
переменных и называется матрицей Гессе.

Симметрии и точные решения нелинейного однородного уравнения (9) с нулевой правой частью 
исследовались в [26, 27]. В [28 – 31] были описаны некоторые редукции и точные решения соответ-
ствующего неоднородного уравнения и более сложных, чем (9), родственных уравнений, содержащих
сильную нелинейность вида det   i jx xu .

5. Качественные особенности, симметрии, преобразования, редукции и точные решения парабо-
лических уравнений типа Монжа – Ампера с тремя независимыми переменными, которые содержат 
первую производную по времени ut и квадратичную нелинейность относительно комбинации старших 
производных по пространственным переменным вида 2 ,−xx yy xyu u u  рассматривались в [13, 32–38].

Данная работа посвящена точной линеаризации в замкнутой форме различных классов уравне-
ний Монжа – Ампера достаточно общего вида, зависящих от одной до шести произвольных функций 
одного или двух аргументов. Для линеаризации использованы контактные преобразования Эйлера  
и Лежандра и специальные точечные преобразования (включая преобразование годографа) их комби-
нации, которые приводят уравнение (7) к уравнению аналогичного вида с другими функциональными 
коэффициентами Fn.

Замечание 1. Под точной линеаризацией в замкнутой форме в данной статье понимаются невы-
рожденные преобразования, записанные в виде аналитических формул, связывающих старые и но-
вые независимые и зависимые переменные и их первые производные, которые приводят нелинейные 
уравнения с частными производными к линейным уравнениям с частными производными. При этом 
не допускаются никакие упрощения и аппроксимации. Считается также, что все члены, входящие  
в используемые преобразования, известны и выписаны явно.

1. Преобразование Эйлера и линеаризация уравнений

1. Для упрощения, линеаризации и поиска точных решений нелинейных уравнений в частных про-
изводных применяется контактное преобразование Эйлера, которое определяется формулами (см., на-
пример, [13, 39, 40]): 

	 x = X,   y = UY ,   u = YUY – U   (прямое преобразование),                                   (10)
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	 X = x,   Y = uy ,   U = yuy – u   (обратное преобразование),                                   (11)

где u = u(x, y) и U = U(X, Y), а первые производные ux и Ux и вторые производные связаны соотноше-
ниями [13, 40]: 

	
2 1, , , .−

= − = = − =XY XX YY XY
x X xx xy yy

YY YY YY

U U U Uu U u u u
U U U                                  (12)

Из (12) также следует, что 

2 .− = − XX
xx yy xy

YY

Uu u u
U

Преобразование Эйлера (10) – (11), как и другие контактные преобразования, не повышает порядок 
уравнений, к которым оно применяется. Пусть U = U (X, Y) будет решением преобразованного уравнения. 
Тогда формулы (10) определяют соответствующее решение исходного уравнения в параметрической 
форме.

При применении преобразований Эйлера отдельные решения могут быть потеряны, если в некоторой 
подобласти вторая производная uxx (или uyy ) тождественно равна нулю.

Альтернативное преобразование Эйлера можно получить из (10) – (11) путем переобозначений не-
зависимых переменных x y  и X Y .

2. Преобразование Эйлера (10) приводит более общее, чем (1), уравнение Монжа – Ампера вида 

	 ( )2 , , , ,− =xx yy xy x yu u u F x y u u                                                           (13)

к более простому уравнению, линейному относительно старших производных: 

	 ( ), , , .= − −XX Y X YYU F X U U Y U                                                       (14)

Отсюда, в частности, следует, что уравнение Монжа – Ампера 

	 ( )2 ,− =xx yy xy yu u u F x u                                                               (15)

линеаризуется преобразованием Эйлера для любой функции двух аргументов F(x, z). Отметим, что 
линеаризация уравнения (15) для частного случая, когда F зависит только от x, была доказана в [16, 24].

Замечание 2. Преобразование Эйлера (10) – (11) позволяет получить общие решения уравнения Монжа 
– Ампера (1) при F(x, y) = 0 и F(x, y) = – a2 в параметрическом виде, эквивалентном (2) и (3). Это следует 
из решений преобразованного уравнения (14) при F = 0 и F = – a2.

3. Более общее, чем (15), уравнение Монжа – Ампера 

	  ( ) ( )2 , ,− = +xx yy xy y y yyu u u F x u G x u u                                                   (16)

с помощью преобразования Эйлера (10) приводится к линейному уравнению с частными производными 

	 ( ) ( ), , .= − −XX YYU F X Y U G X Y                                                       (17)

Рассмотрим два специальных случая, когда можно получить в явном виде общее решение преоб-
разованного уравнения (17).
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Случай 1. При F ≡ 0 общее решение уравнения (17) можно представить в виде 

( ) ( )
0

( ) ( ) , ,= j + y − − x x x∫
X

X

U Y X Y X G Y d

где j(Y) и y(Y) – произвольные функции; X0 – произвольная постоянная.
Случай 2. При F = – a2 > 0, G(X, Y) = G1(X) + G2(Y) общее решение уравнения (17) записывается так: 

0 0

1 22

1( ) ( ) ( ) ( ) ( ) ( ) ,= F + + Y − − − x x x + − h h h∫ ∫
X Y

X Y

U Y aX Y aX X G d Y G d
a

где F(Y) и Y(Y) – произвольные функции; X0 и Y0 – произвольные постоянные.
4. Нетрудно показать, что следующие пять уравнений Монжа – Ампера: 

	

2

2

2

2

2

( , ) ( , ) ,
( , ) ( , ) ,
( , ) ( , ) ,
( , ) ( , ) ,
( , ) ( , ) ,

− = +
− = +
− = +
− = +
− = +

xx yy xy y y xy

xx yy xy y y yy

xx yy xy y y yy

xx yy xy y x y yy

xx yy xy y xy y yy

u u u F x u G x u u
u u u F x u yG x u u
u u u F x u uG x u u
u u u F x u u G x u u
u u u F x u u G x u u

                                              (18)

где F и G – произвольные функции двух аргументов, линеаризуются с помощью преобразования Эй-
лера (10).

5. Более общее, чем (16) и (18), уравнение Монжа – Ампера 

	 ( ) ( ) ( ) ( ) ( ) ( )2 , , , , , , 0, − + + + + + + = xx yy xy y x y y y yy y xy yu u u f x u u g x u u h x u y p x u u q x u u r x u        (19)

где f, g, h, p, q, r – произвольные функции двух аргументов, с помощью преобразования Эйлера (10) 
приводится к линейному уравнению с частными производными 

[ ]( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0.+ − + − + + − =XX XY YY X YU q X Y U r X Y U f X Y U g X Y Y h X Y U g X Y U p X Y   (20)

При g = h = r = 0 уравнение (20) подстановкой W = UX сводится к линейному уравнению с частными 
производными первого порядка.

6. Другое линеаризуемое уравнение Монжа – Ампера, зависящее от шести произвольных функций 
двух аргументов, можно получить с помощью альтернативного преобразования Эйлера, переобозначив 
независимые переменные x y  и X Y  в (10), (11) и (19), (20).

2. Преобразование Лежандра и линеаризация уравнений

1. Помимо преобразования Эйлера (10) для линеаризации и упрощения нелинейных уравнений  
с частными производными используется также контактное преобразование Лежандра, которое опре-
деляется формулами (см., например, [2, 13, 39]):

	 x = UX ,   y = UY ,    u = XUX + YUY – U   (прямое преобразование),                           (21)

	 X = ux ,    Y = uy ,    U = xux + yuy – u   (обратное преобразование),                           (22)

где u = u(x, y) и U = U(X, Y), а вторые производные вычисляются по формулам 
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	 2 2, , , , 1 / .= = = − = = − = −xx YY xy yx XY yy XX xx yy xy XX YY XYu JU u u JU u JU J u u u J U U U           (23)

Пусть U = U ( X, Y ) будет решением преобразованного уравнения. Тогда формулы (21) определяют 
соответствующее решение исходного уравнения в параметрической форме. При применении преобра-
зования Лежандра отдельные решения могут быть потеряны, если в некоторой подобласти якобиан J 
тождественно равен нулю.

2. Более общее, чем (1), уравнение Монжа – Ампера (13) с помощью преобразования Лежандра  
(21) – (22) приводится к уравнению аналогичного вида 

( ) ( ) ( )
2 1, , , , , , , .

, , ,
− = =XX YY XY X Y X Y

X Y

U U U G X Y U U G X Y U U
F U U X Y                     (24)

Отсюда, в частности, следует, что уравнение Монжа – Ампера 

	 ( )2 ,− =xx yy xy x yu u u F u u                                                             (25)

преобразованием Лежандра сводится к более простому уравнению вида (1).
Замечание 3. Нестационарное (параболическое) уравнение Монжа – Ампера 

2 ,= −t xx yy xyu u u u

которое встречается в электронной магнитной гидродинамике [9], допускает двумерные решения [35]: 

	 ( , ) , , ,= x h + x = + h = +u U ct x at y bt

где a, b, c – произвольные постоянные, а функция U = U(x, h ) описывается уравнением Монжа – Ам-
пера вида (25): 

	 2 .xx hh xh x h− = + +U U U aU bU c

Это уравнение может быть линеаризовано, см. далее п. 1 в разд. 4.
3. Уравнение Монжа – Ампера 

	
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2, , , ,

, , , 0,

 + + + − + 
+ + + =

x y x y x y x y xx yy xy

x y xx x y xy x y yy

up u u xq u u yr u u s u u u u u

f u u u g u u u h u u u
                            (26)

где f, g, h, p, q, r, s – произвольные функции двух аргументов, преобразованием Лежандра приводится 
к линейному уравнению 

 	
[ ]

[ ]
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) 0.

− + + + +

+ + − + =
YY XY XX X

Y

f X Y U g X Y U h X Y U q X Y X U

r X Y Y U p X Y U s X Y
                                (27)

Из (26), в частности, следует, что могут быть линеаризованы следующие два уравнения: 
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2

2 1

(| |) ,
(| |) ,−

− = ∇ D
− = ∇ D

xx yy xy

xx yy xy

u u u f u u
u u u u f u u

                                                      (28)

где f (z) – произвольная функция; ( )1/22 2| | ;∇ = +x yu u u  Du = uxx + uyy. Эти уравнения входят в класс обоб-
щенных уравнений типа Монжа – Ампера, которые рассматривались в [31].

3. Неклассическое преобразование годографа и линеаризация уравнений

1. Для упрощения и анализа некоторых нелинейных уравнений математической физики используется 
неклассическое преобразование годографа [13, 40, 41]. Для уравнения с двумя независимыми пере-
менными x и y и искомой функцией u = u(x, y) неклассическое преобразование годографа заключается  
в том, что решение ищется в неявном виде (x и y можно поменять местами): 

	 x = x(u, y),                                                                         (29)

т.е. u и y принимаются за независимые переменные, а x – за неизвестную функцию. Преобразование 
годографа (29) не меняет порядок уравнения и является важным частным случаем точечного преобра-
зования (его можно записать в эквивалентном виде: ,=x u  ,=y y  ).=u x

Дифференцируя (29) по обеим переменным как неявную функцию и учитывая, что u = u(x, y), можно 
получить следующие формулы для производных [13, 40]: 

2 2

3 3 3

21 , , , , .
− − + −

= = − = − = − =y u uy y uu u yy u y uy y uuuu
x y xx xy yy

u u u u u

x x x x x x x x x x x xxu u u u u
x x x x x

         (30)

Из (30) также следует, что 

	 ( )2 4 2 .−− = −xx yy xy u uu yy uyu u u x x x x

Неклассическое преобразование годографа (29) в комбинации с контактными преобразованиями Эй-
лера и Лежандра можно использовать для линеаризации некоторых классов уравнений Монжа – Ампера.

2. Применив преобразование годографа (29) к линеаризуемому уравнению Монжа – Ампера (15), 
получим другое линеаризуемое уравнение Монжа – Ампера, которое после обратных переобозначений 
( u x ) можно записать в виде 

	 ( )2 4 , / ,− =xx yy xy x y xu u u u H u u u                                                          (31)

где H(x, z) = F1(x, –z) – произвольная функция двух аргументов. Отметим, что уравнение (31) из других 
соображений было получено в [24].

Применяя далее преобразование Лежандра (21) с частному случаю линеаризуемого уравнения (31) 
при H(x, z) = h(z), после очевидных переобозначений приходим к линеаризуемому уравнению Монжа 
– Ампера 

( )2 4 / ,−− =xx yy xyu u u x f y x

где f (z) – произвольная функция (см. случай 2) в (4)).
Более сложные линеаризуемые уравнения Монжа – Ампера можно получить, например, применив 

преобразование годографа (29) к линеаризуемым уравнениям (16) и (18).
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4. Линеаризация уравнений Монжа – Ампера, встречающихся в метеорологии и геофизике

Ниже рассматриваются некоторые линеаризуемые уравнения типа Монжа – Ампера (7), которые 
встречаются в метеорологии и геофизике [11, 12].

1. Рассмотрим уравнение Монжа – Ампера (25) специального вида 

	 2 ,− = + +xx yy xy x yu u u au bu c                                                           (32)

где a, b, c – свободные параметры. Некоторые точные решения этого уравнения и его модификаций 
приведены в [11, 13].

Уравнение (32) преобразованием Лежандра (21) – (22) сводится к уравнению 

2 1 ,− =
+ +XX YY XYU U U

aX bY c

которое является частным случаем линеаризуемого уравнения Монжа – Ампера вида (1) с правой 
частью (5).

Отметим, что уравнение Монжа – Ампера (32) допускает точное решение 

1 1 2( ) , = j − + − + + 
 

cu ay bx bC x aC y C
b

где j(z) – произвольная функция; C1 и C2 – произвольные постоянные. На этом решении левая часть 
уравнения (32) обращается в нуль, поэтому оно будет потеряно при использовании преобразования 
Лежандра.

2. Уравнение Монжа – Ампера 

	 2 ( ) ( ) 0,− + + + + =xx yy xy xx xy yyu u u au bu g x u h x                                            (33)

где g(x), h(x) – произвольные функции, a, b – свободные параметры, заменой 

	 2

0

1 1( , ) ( ) ( )
2 2

= − − + −∫
x

u w x y x t g t dt bxy ay                                               (34)

приводится к допускающему линеаризацию более простому уравнению вида (15) при F = F(x): 

2 21( ) ( ) 0.
4

− + − + =xx yy xyw w w h x ag x b

3. Более общее, чем (33), уравнение Монжа – Ампера 

	 2 ( ) ( ) ( ) 0,− + + + + =xx yy xy xx xy yyu u u au f x u g x u h x                                          (35)

где f (x), g(x), h(x) – произвольные функции; a – свободный параметр, заменой 
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	 21( , )
2

= −u V x y ay                                                                   (36)

приводится к частному случаю уравнению вида (19): 

2 ( ) ( ) ( ) ( ) 0,− + + + − =xx yy xy xy yyV V V f x V g x V h x ag x

которое допускает точную линеаризацию с помощью преобразования Эйлера (10).
4. Уравнение Монжа – Ампера 

	 2 ( ) ( ) ( ) 0,− + + + + =xx yy xy xy yy yu u u au f x u g x u h x                                            (37)

где f (x), g(x), h(x) – произвольные функции; a – свободный параметр, заменой 

1( , )
2

= +u W x y axy

приводится к уравнению 

2 21 1( ) ( ) ( ) ( ) 0.
4 2

− + + + + + =xx yy xy yy yW W W f x W g x W a axg x h x

Это уравнение является частным случаем уравнения (16) при 21( , ) ( )
4

= + +F x z g x z a 1 ( ) ( ),
2

+ +axg x h x  

G(x, z) = f (x) (и после переобозначения W на u), которое линеаризуется преобразованием Эйлера (10).
5. Уравнение Монжа – Ампера вида 

	 2 ( , ),− + + + = Fxx yy xy xx xy yyu u u au bu cu x y                                               (38)

где a, b, c – свободные параметры, заменой 

	 2 21 1 1( , )
2 2 2

= − + −u w x y cx bxy ay                                                   (39)

приводится к более простому уравнению вида (1): 

	 2 21( , ) .
4

− = F + −xx yy xyw w w x y ac b                                                    (40)

Сопоставление (40) с уравнением (1) в случаях (5) и (6) показывает, что исходное уравнение (38) 
может быть точно линеаризовано для следующих двух функций: 

( )1 1 1 11) ( , ) ;F = + +x y f a x b y c
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( )
2 2 2 2

24
1 1 11 1 1

1 12) ( , ) ,
4

+ + F = − + +  + ++ +  

a x b y cx y ac b f
a x b y ca x b y c

где  f1(z1 ) и  f2(z2 ) – произвольные функции; a1, a2, b1, b2, c1, c2 – свободные параметры.

Замечание 4. При F(x, y) = k = const и 21 0
4

+ − <k ac b  общее решение преобразованного уравнения

(40) (и соответственно исходного уравнения (38)) можно получить с помощью очевидных переобозна-
чений в формулах (3).
6. Уравнение Монжа – Ампера 

	 2 0,− + + + =xx yy xy xx xu u u au bu c                                                         (41)

где a, b, c – свободные параметры, заменой (36) приводится к более простому линеаризуемому урав-
нению вида (32): 

2 0.− + + =xx yy xy xV V V bV c

7. Нестационарное уравнение с нелинейностью типа Монжа – Ампера [37]: 

2= −tt xx yy xyu u u u                                                                    (42)

в переменных бегущей волны имеет двумерное симметрийное решение 

( , ), , ,= x h x = + h = +u U x at y bt

где a, b – произвольные постоянные, а функция U = U(x, h) описывается линеаризуемым уравнением 
Монжа – Ампера вида (33): 

2 2 22 .xx hh xh xx xh hh− = + +U U U a U abU b U

Замечание 5. Уравнение (42) встречается в геофизической гидродинамике. Симметрии и точные 
решения этого уравнения рассматривались в [43].

Краткие выводы

Рассмотрены различные классы уравнений типа Монжа – Ампера с двумя независимыми перемен-
ными, зависящих от одной до шести произвольных функций одного или двух аргументов, которые 
допускают точную линеаризацию. Для линеаризации использованы контактные преобразования Эйлера 
и Лежандра, а также неклассическое преобразование годографа и другие точечные преобразования. 
Найдены также некоторые точные решения рассматриваемых уравнений. Особое внимание уделяется 
уравнениям Монжа – Ампера, которые встречаются в метеорологии и геофизике.
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New classes of Monge – Ampère equations of a fairly general form are described, depending on 
one to six arbitrary functions of one or two arguments that allow exact linearization in closed form. 
For linearization, contact Euler and Legendre transformations and special point transformations 
(including the nonclassical hodograph transformation) of their combinations are used. Special attention 
is given to the Monge – Ampère equations encountered in meteorology and geophysics. Equivalence 
transformations of classes of Monge – Ampère equations of a special kind are also considered. For 
some nonlinear equations, exact solutions were obtained depending on arbitrary functions. Two 
nonstationary, strongly nonlinear Monge-Ampère type equations with three independent variables, 
encountered in electron magnetohydrodynamics and geophysical fluid dynamics, were also considered. 
For these equations, two-dimensional reductions to simpler equations that allow exact linearization 
were constructed in traveling-wave variables.

Keywords: Monge – Ampère equations, fully nonlinear PDEs, exact linearization, Euler and Legendre 
transformations, hodograph transformation, contact and point transformations. 
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