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Рассматриваются функциональные итерационные процессы f k(x) = f  ( fk-1 (x)), k = 2,3,..., где на­
чальная функция f 1(x) = f  (x) относится к классу невырожденных дробно-линейных функций. Це­
лью работы является изучение всевозможных типов итерационных процессов, которые возникают 
при варьировании параметров f  (x). Для решения возникших рекуррентных соотношений исполь­
зуются матричные методы и комплексные числа. В работе в общем виде получены формулы для ко­
эффициентов k-й итерации при любом k  в зависимости от коэффициентов начальной функции. 
Определены два инварианта итерационных процессов. Показано, что циклы длины n > 2 могут су­
ществовать только для комплексно-сопряженных собственных значений матрицы коэффициентов 
дробно-линейной функции. Найдены все начальные функции, порождающие циклы произвольной 
заданной длины n > 2 , и получены явные выражения, определяющие коэффициенты любого эле­
мента цикла через коэффициенты начальной функции. Приведен пример цикла максимальной 
длины n = 6 , у которого все коэффициенты каждой итерации являются целыми числами.
Для нециклических процессов исследовано поведение k-й итерации при k ^  ж и в случаях сходи­
мости определены предельные функции. Нециклические итерационные процессы подразделяются 
на сходящиеся (действительные собственные значения) и расходящиеся (комплексно-сопряжен­
ные значения, не удовлетворяющие условиям цикличности). Сходящиеся итерации имеют своей 
предельной функцией константу.
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ВВЕДЕНИЕ 

Д робно-линейная функция

f (  x) = A x + B  
Cx + D

(1)

где A, B, C, D e R  и AD  — BC  ф 0, имеет широкое 
распространение в математике. Если вычислить 
суперпозицию f  (f  ( x )),to получится также дроб­
но-линейная функция с другими коэффициента­
ми. Возникает вопрос, можно ли, последователь­
но вычисляя итерации f  (f  (x)), f  (f  (f  (x ))),..., на 
заданном шаге получить исходную функцию f  (x). 
Введем обозначения: f1(x) = f  (x), f 2 (x) = f  ( f  (x)), 
f k (x) = f  ( f  ( . . . f  ( x)...)). Назовем циклом длины n

k
последовательность функций f1 (x ), f2 (x ), ..., fn(x ) 
такую, что f k(x) Ф x  при k  < n и

fn( x) = x. (2)

При этом функцию f 1(x) = f  (x) будем назы ­
вать начальной функцией, порождающей цикл, а 
f k (x) — элем ентом  цикла или k -й  итерацией, 
k  =  1 , 2 , ..., n.

На первом этапе решается следующая задача: 
для произвольного заданного натурального n найти 
все начальные функции вида ( 1 ), порождающие цикл
длины n . 1

В заключительной части работы рассматрива­
ются нециклические итерационные процессы
fk+1 (x) = f ( f k (x)), k  = 1 , 2 ,..., такие, что f k (x) Ф x  
при любом k .

Ф ункция (1) вырождается в константу, если 
AD  =  BC, или в линейную функцию (C =  0, D ф  0, 
A  ф  0). Обе эти возможности объединяются фор­
мулой: f  (x) = kx  + b . Для этого тривиального слу- 1

1 Существование циклов произвольной длины n показано в [1], 
где также приведены формулы для циклов с n < 4 и n = 6.
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чая легко находятся все возможные начальные 
функции, порождающие циклы: f  (x) = x , 
f (x) = b , n = 1; f (x) = - x  + b , n = 2. В дальней­
шем будут рассматриваться только невырожден­
ные начальные функции.

и соответствующую ей начальную матрицу

F  = F  =
a b  )•

где a, b, c е  R и b ^  ac.

(8)

1. ФОРМ УЛЫ  ДЛЯ КО ЭФ Ф И Ц И ЕН ТО В k-й 
ИТЕРАЦ ИИ В ОБЩ ЕМ  СЛУЧАЕ

Обозначим

f k (x) = A X  + B  , k  = 1,2,.... (3)
Ckx  + Dk

Для коэффициентов начального элемента f 1 (x) 
имеем: A1 = A,..., D  = D . Вычисляя суперпози­
цию f  (f k (x)), находим (k + 1 )-й  элемент

f k +1 (x) = f ( fk  (x)) =
(AAk + BCk )x + ABk + BDk 
(CAk + DCk )x + CBk + DDk ’

Условие (6 ), при котором n -я итерация превра­
щается в тождественное преобразование id(x) =  x, 
определяет возможность существования цикла и 
его длину n. Для упрощения процедуры возведе­
ния в степень диагонализируем матрицу F  в тех

(X 1 0
случаях, когда это возможно. Пусть Л = I

|  0  Х 2

соответствующая матрице F  диагональная матри­
ца из собственных значений. Характеристическое 
уравнение det(F  -  XE ) = 0 имеет вид

X2 -  (a + c)X + ac -  b = 0 . (9)
что позволяет получить соотношения, связываю­
щие коэффициенты последовательных итераций Его корни

A k+1 = A A k + B C k , B k+1 = A B k + B D k ,

Ck+1 = CAk + D C k , Dk+1 = CBk + D D k.
X  =

a + c + Г X2 = a + c ■■ Га (10)

Систему рекуррентных соотношений (4) можно 
решить в матричном виде. Каждой итерации (3) по­
ставим в соответствие матрицу коэффициентов

F Ak Bk I
Ck Dk) ,

(5)

где F1 = F  =
A B  
C D

Сравнение результата умно-

ж ения матриц

где Д =  (a + c) 2 — 4(ac — b) — дискриминант урав­
нения.

Отметим, что корнем уравнения (9) не может 
быть X =  0 , так как это противоречило бы условию 
невырожденности b — ac ^  0 функции (7). Коор-

(  x1 X
динаты собственного вектора X X = I I, соответ-

I  x2 )
ствующего собственному значению X, определя­
ются из системы

FFk
AA-k + BCk ABk + BDk I 
CAk + DCk CBk + DDk I

с формулами (4) показывает, что преобразование 
коэффициентов k -й  итерации в точности соот­
ветствует правилу перемножения матриц. Следо­
вательно, Fk + 1 =  FFk =  F k + 1, и тогда условие (2) в 
матричной форме принимает вид

F n = G, (6 )

(g  0Л ( 1  0 ^
где G = I 0  g I = g E , g Ф 0, и E  = I 0  1  I -  единич­

ная матрица.
Поскольку дробно-линейную функцию (1) бе­

рем невырожденной, то C ^  0, и тогда можно 
уменьшить число начальных параметров функ­
ции, поделив в (1) числитель и знаменатель на C. 
В результате имеем начальную функцию

f  ( x ) = ^
x + c

(7)

Г (a -X )x 1 + bx2 = 0, ( 1 1 )
{ x1 + (c -  X)x2 = 0 .

Рассмотрим реш ения в зависимости от корней 
характеристического уравнения.

1.1. Различные собственные значения X1 ^  Х2

Решая систему (11) последовательно для Х1 и 
X2, находим базис из собственных векторов

E*
X1 -  c

и матрицу перехода T

к=  =  ^X_ - c X 2 1-  c^ от 6азш;а e  ^ 1  j , E 2 = ( 0

базису E*, E*. Вычисляя обратную матрицу T- 1  =  
1  (  1 c - X 2

и используя формулу F  =
X1 -  X2 I - 1  X 1 -  c 

=  TAT- 1  [2], имеем

ВЕСТНИК НАЦИОНАЛЬНОГО ИССЛЕДОВАТЕЛЬСКОГО ЯДЕРНОГО УНИВЕРСИТЕТА “МИФИ” том 9 № 2 2020
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Fk = F k = T  Л kT  1 = — 1—  X
k k - ^ 2

^ (кі -  с) -  Хк2(^ 2 -  С) (Хк1 -  k k2) ( k  -  с)(с -  ^ 2 >л

у k 1 -  к 2 к 1 (с -  k 2 ) + к 2 (k 1 -  с) у

Учитывая, что для корней k  и k 2 уравнения (9) 
выполняются соотношения: k  + k 2 = a + с, k ^ 2 = 
=  ac — b и ( k  — с)(с — k2) =  b, в результате преоб­
разований находим матрицу коэффициентов к-й  
итерации

(і к+ 1

Fk =

л к+ 1 л к+ 1 л кА<1 Л2 ^ 1 ‘ кк
к 1 -  к 2 к 1 -  к 2

кк ■кк
к 1 -  к 2

кк У b

л к+ 1 л к+ 1 л к
к 1 -  к 2 к 1

к 1 -  к 2
к+ 1

1 кк
к  -  ^ 2  к  - к 2 J

(12)

В итоге получаем явное выражение для итера­
ции / к (x) в зависимости от к  и k2, определяемых 
в ( 1 0 ) коэффициентами a, b, с начальной функ­
ции (7):

= (^к+1 -к к + 1 -  с(^к - к к  ) ) х + b ( ^  - k k ) 
f  (х) (лк -  kk) х + кк+1 -  кк+1 -  а(^к -  кк) , (13)

к  = 1 , 2 ,....

1.2. Д = 0, действительные кратные корни k 1 = k 2
Базис из собственных векторов в этом случае 

состоит из одного вектора. М атрица F  недиагона- 
лизируема, т.к. геометрическая кратность корня 
не совпадает с алгебраической [3]. Выражение 
для Fk вначале формально находим предельным 
переходом из ( 1 2 ) при Л1 ^  k 2 =  k  :

Fk =
^(к  + 1 )kк -  k ckk 1 kbk к- 1

к  k к- 1 (к  + 1 )kk -  k a k к 1;
(14)

Докажем справедливость полученной форму­
лы методом математической индукции.

База индукции. При к  =  1 матрица (14) равна

'  2 k -  с b ^ ( a b
1  2 k -  a J 1 1  c ,

и совпадает с начальной матрицей (8 ).
Далее, предположив, что равенство (14) верно 

при каком-нибудь натуральном к, вычисляем 
произведение матриц

Fk+ 1 = FFk =
= '(к  + 2 )kk + 1 -  (к  + 1 )ckk (к + 1 )bkk Л

v (к  + 1 )k (к  + 2 )k -  (к  + 1 )ak j

Сравнение полученного результата с матрицей (14), 
показывает, что индуктивный переход к  ^  к  + 1  

завершен. Формула доказана.
Элементы матрицы (14) позволяют найти

„ ( ) = ((к  + 1 )k -  kc)x  + kb 
к kx  + (к  + 1 )k -  ka

Учитывая, что Д =  0 и, соответственно,

b = - (a— ^L- и k  = a + c , получаем формулу для 
4 2

k -й итерации в случае кратных корней:

/(a + cX^ + l) -  kc) x -  к (a -  с)

f k(x) = ■
kx  + (a + с)(к  + 1  -  ka

(15)

к  = 1 , 2 ,....

1.5. Д < 0, комплексно-сопряженные корни

k 1,2
_a + с ± h i -  А

2
Так как Д < 0, то ac — b > 0. Представим ком ­

плексные величины k 1 и k 2 в показательной фор­

ме: k 1 = re,a, k 2 = re~,a, где r  = Vac -  b = |k1| = |k2|, 
а величина a  определяется системой

cos a  = a + c
2 Лac -  b

sin a  = , 1
(a + c) 2

(16)

4(ac -  b)
Поскольку k 1 ^  k2, то для вычислений можно 

применить формулу (13). Используя равенство

k k -  k'k = r k (e,ka -  e ,ka) = 2 i( '[a c -b  )k sin k  a,

получаем формулу для f k (x ) в случае комплексно­
сопряженных корней

f k (x) =
b sin(k + 1 )a  -  c sin k a )x  + b sin k a  

b sin(k + 1 )a  -  a sin k a
(4ac__________

x  sin k  a  + 4ac
k  = 1 , 2 ,....

(17)

Стоящий в знаменателе дроби многочлен отно­
сительно x  имеет степень, не выше первой, и не 
может тождественно равняться 0. Действительно, 
если предположить противное, тогда sin k a  =  0  и 
sin(k + 1)a =  0, отсюда следует, что sina  =  0. П о­
следнее означает, что Im  k 1 2  =  0  — противоречие.
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Каждую невырожденную итерацию (3) произ­
вольного итерационного процесса можно пред­
ставить в аналогичном (7) виде

fk  (X) = , (18)
x + ck

где akck -  bk Ф 0 — условие того, что f k(x) не вы­
рождается в константу. Областью определения X  
итерационного процесса назовем пересечение 
областей определения всех функций f k (x):

M
X  = R \ ( J  {-Ck},

k= 1

U M
1 {—ck} является

не более, чем счетным (M  =  n — 1 для цикла длины n 
и M  =  + го для нецикличного процесса). Преоб­
разуем (18), выделив целую часть дроби

f k  (x) = ak +
bk -  akck 

X + Ck

На плоскости Oxy графиком функции является 
гипербола с асимптотами x = -c k и y  = ak и с цен­
тром в точке ( -c k, ak).

Лемма.
1. Если начальная функция не вырождена, то лю ­

бая последующая итерация не вырождается в кон­
станту.

2. Любой итерационный процесс с невырожден­
ными итерациями (18) имеет инварианты:

ck -  ak = c -  a,
где a, b, c — коэффициенты начальной функции (7).

Для доказательства первого утверждения лем­
мы заметим, что ac — b ф 0  в силу невырожденно­
сти функции (7). Тогда при любом k  определитель 
матрицы (5) отличен от нуля:

det Fk = d e t(F k) = (det F )k = (ac -  b)k Ф 0,

а это означает, что f k (x) не вырождается в кон ­
станту.

Справедливость второго утверждения легко 
проверяется с помощью формул (13), (15) и (17), 
преобразованных вначале к  виду (18).

В дополнение к  п. 1 леммы заметим, что усло­
вие невырожденности f  (x) не запрещает, тем не 
менее, некоторой итерации превращаться в тож­
дественное преобразование idX (x) = x.

Инвариант (19) на плоскости Oxy имеет на­
глядный геометрический смысл: центры (-ck, ak) 
гипербол (18) при изменении k  двигаются по пря­
мой x + y  = a -  c.

2. ЦИ КЛЫ  П РОИ ЗВО ЛЬНО Й ДЛИНЫ
Циклы длины n =  1 для невырожденных функ­

ций невозможны. Действительно, предположив, 
что f  (f  (x)) = f  (x), получим f  (x ) = x или 
f  (x) = b — вырожденные функции. Рассмотрим 
возможность выполнения равенств (2 ), (6 ), опре­
деляющих завершение цикла на n -м шаге, в зави­
симости от корней характеристического уравне­
ния (9 ).

2.1. Действительные различные корни Х1 ф Х2
Для выполнения условия (2) потребуем, чтобы 

в знаменателе дроби (13) коэффициент при x  рав­
нялся 0: X1 -  XI = 0. Так как корни действитель­
ны и различны, то последнее равенство может 
выполняться, только если Х1 =  — Х2 при четном n. 
Но тогда по теореме Виета для уравнения (9) име­
ем: a + c =  0. Использование равенства c = —a уже

г / \ (a2 + b)xдля второй итерации дает f 2 (x) = 1 —2— — = x  при
a + b

b ф —a2. Это означает, что в случае действительных 
различных корней:

а) все циклы длины n =  2  имеют вид

У1 ( x) = f  (x) = ,
x -  a

f 2 (x) = x, (a, b e  R; b Ф - a 2);
б) циклы длины n > 2  невозможны.

(2 0 )

2.2. Кратные корни X1 = Х2 = X
Условие (6 ) не может быть выполнено, т.к. из 

формулы ( 1 4 ) следует, что коэффициент
Cn = nXn - 1 матрицы Fn не обращается в 0 (X =  0 не 
является корнем уравнения (9)). Циклы не суще­
ствуют.

2.3. Комплексно-сопряженные корни
Для выполнения условия (2) необходимо, что­

бы коэффициент при x  в знаменателе дроби (17) 
равнялся 0 : sin n a  =  0  тогда n a  =  nm  и, значит, ве­
личина a  зависит от m и n:

a mn = —  (m e Z ,n  e  N ). (21)
n

Поскольку условие a + c =  0 приводит к  циклу 
длины n =  2  и этот случай разобран в п. 2 . 1 , то те­
перь a + c ф 0. Поделим второе уравнение (16) на 
первое:

tan  —  = f i a£ - b b ( £ ± 2  (2 2 )
n a + c

и выразим отсюда b:

b = -
(a -  c) 2 + (a + c)2 tan 2a  mn 

4
(23)
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где a mn определена в (21). Ш детавдяя в (17) формулы для элементов f k(x) всех циклов длины 
4ac -  b =  —a + c— из (16) и b, в итоге получаем n > 2 :

2cos a mn

ax -
f (  x) = f  (x) = ■

(a -  c) 2 + (a + c)2 tan 2 g„
___________4_________

f k(x) =

x  + c
(a + c)sin(k + 1 )amn -  c ] x  -  (a -  c) 2 + (a + c)2 tan 2 a n 

2 c o s a mn sin k a  „
(24)

x + (a + c) sin(k + 1 )a mn 
2 c o s a mn sin k  a mn

k  = 2 , . . . ,n - 1 , f n(x) = x,

где a ,c e ^ , a + c Ф 0 , a mn = n m /n , m = 1 , 2 ,...,[n /2 ] 
и НОД(m, n) =  1 .

Ограничения на индекс m обусловлены требо­
ванием избежать повторений полученных резуль­
татов. В силу периодичности функции тангенс, 
входящей в (23), из множества целых значений 
для m достаточно брать лиш ь m =  1, 2, ..., n —1. Д а­
лее, используя тригонометрические формулы 
приведения, нетрудно проверить, что при замене 
m на n — m величины b и f k(x) не изменятся, по­
этому достаточно оставить m =  1 , 2 , ..., [n/2 ], где 
[n/2] — целая часть числа n/2. Наконец, если m и n 
имеют общий делитель, то после сокращ ения на 
него формулы (24) определят элементы f k(x) 
цикла, имеющего длину, меньшую чем n. Значит, 
m и n взаимно просты. Для циклов длины n число 
различных значений m , удовлетворяющих пере­
численным условиям, равно ф (п) /2 , где ф (п) — 
функция Эйлера (определяется как количество 
чисел от 1  до n , взаимно простых с n ).

Формулы (24) совместно с (20) дают полное 
решение задачи нахождения всех циклов длины 
n > 2. Полученные результаты показывают, что 
все возможные циклы произвольной фиксиро­
ванной длины образуют двухпараметрические се­
мейства трехпараметрического множества невы­
рожденных функций (7).

Поставим задачу несколько иначе. Пусть зада­

на функция f  (x) = ax + b и требуется определить, 
x  + c

зная коэффициенты a, b, c, является ли f  (x) на­
чальной функцией какого-либо цикла и чему рав­
на его длина.

Если a + c =  0, то имеем цикл (21) с n =  2, где 
условие b ^  —a2 обеспечивает невырожденность 
f  (x). Других циклов при n =  2 нет.

Пусть a + c ^  0.
Поскольку циклы с n > 2 для действительных 

корней характеристического уравнения (9) отсут­
ствуют, остается случай комплексно-сопряжен­

ных корней, а тогда итерации f k (x) в общем виде 
определены формулами (17).

О бозначим a  =  пв и, учитывая из (16), что 
угол пв может принадлежать только первой или 
второй четверти, найдем в, опуская слагаемые, 
кратные 2 п:

в = ia r c c tg ^ -------- a ----------. (25)
п V4(ac -  b) -  (a + c) 2

Здесь ве (0;1)\{1/2}, т.к. a + c ^  0. Отметим, что 
формула (25) справедлива как для циклических, 
так и нециклических процессов.

Если процесс цикличен и n > 2, тогда из (23) 
имеем

m = I  arcctg-,--------a-+ c -------- . ,
n n V4(ac -  b) -  (a + c) 2

m
причем — e (0; 1)\{1/2}. Правая часть равенства яв-

n
ляется рациональным числом, поэтому для цик­
лических процессов величина в принимает толь­
ко рациональные значения. Обратно, если коэф ­
фициенты функции f  (x) таковы, что величина в 
существует и рациональна, то ее можно записать 
в виде несократимой дроби m/n. При в =  1/2 име­
ем цикл длины 2. Если в ^  1/2, тогда цикл с n > 2 
существует и описывается формулами (24), при­
чем знаменатель несократимой дроби m /n  одно­
значно определяет длину цикла. Следовательно, 
для нециклических процессов величина в может 
принимать только иррациональные значения, 
ве(0 ; 1)\Q. Таким образом, справедливо утвер­
ждение:

Теорема 1. Функция f  (x) = ax  + b является на-
x  + c

чальной функцией цикла длины n > 2  только при вы­
полнении условий:

1 . a + c ^  0 ;
2 . Д < 0 ;
3. ве(0 ;1) n  Q.
При этом длина цикла определяется однозначно.
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Заметим, что выполнение второго условия 
обеспечивает также невырожденность начальной 
функции f  (x), т.к. из Д < 0  следует ac — b > 0 .

Следует отметить, что множество элементов 
цикла длины n образует циклическую группу по­
рядка n относительно операции суперпозиции 
функций, где в качестве единичного элемента бе­
рется функция idX (x) = x, а образующим группу 
элементом является начальная функция f (x). 
Поэтому на основании свойств циклических 
групп [4, 5] можно сразу привести некоторые 
свойства итерационных циклов длины n:

— в качестве начальной функции можно брать 
любой элемент f k (x), если только k  и n взаимно 
просты. В частности, т.к. НОД(п — 1, n) =  1, то,
взяв начальную функцию f n - 1( x) = f  _ 1 ( x), имеем 
цикл f n-1(x), f n-2 (x),..., f 1 (x), x — исходный цикл, 
проходимый в обратном порядке.

— Если n — простое число, то начальным эле­
ментом, порождающим цикл, кроме f 1 (x) может 
быть любой элемент f k (x), к  = 2 ,..., n -  1 .

— Если к  является делителем n и n /k  =  h, то 
f k (x) является начальной функцией подцикла 
д л и н ы h: f k (x ) ,f 2k(x),..., fh_ 1)k(x), x и TVH.

Назовем целочисленным цикл, у которого все 
коэффициенты каждой итерации являются раци­
ональными (целыми) числами, или становятся 
такими после умножения числителя и знаменате­
ля итерации на некоторое ненулевое число (усло­
вие рациональности коэффициентов функции (3) 
равносильно условию целочисленности). Оче­
видно, что необходимым и достаточным услови­
ем целочисленности цикла является рациональ­
ность всех коэффициентов начальной невырож­
денной функции (7) (достаточность следует из 
формул (4)). Случай циклов с n =  2 тривиален, для 
циклов с n > 2 (a + c ^  0) из (23) следует, что
a, b, c е Q ^  tan 2(nm/n) е Q. Последнее условие в
силу формулы cos 2 0  = ( 1  _  tan 2 0 ) / ( 1  + tan 2 0 ) рав­
носильно тому, что cos(2nm/n) е Q.

Теорема 2 [6 , с. 168]. Пусть 0 < a  < 90°. Тогда, 
если угол а  содержит рациональное число градусов и 
а  ^  6 0 °, то число cosa иррационально.

Применяя теорему и учитывая, что m и n вза­
имно просты, устанавливаем, что n =  6  — макси­
мальное значение, при котором cos(2nm/n) е Q. 
Возьмем в (24) a =  1, c =  2, n =  6 , m =  1. В резуль­
тате получим цикл, у которого все коэффициенты 
каждой итерации являются целыми числами:

f 1 (x) = 

f3(x) = -

x - 1  

x + 2 ’ 
x  + 2

fs(x) = _

2  x + 1  

2 x + 1

f 2 ( x) = -  

f4( x) = ■

1
x + 1  

x  + 1

x - 1

x

fe( x) = x.

Это пример (не единственный) целочисленно­
го цикла максимальной длины n =  6 .

3. п р е д е л ь н ы е  ф у н к ц и и  
н е ц и к л и ч е с к и х  п р о ц е с с о в

Выясним вопрос, что происходит с итерация­
ми (18), если k  неограниченно возрастает и при 
этом f k(x) Ф x  при всех k. Введем обозначения

ax = lim  ak, cx = lim  ck (26)

(в силу леммы bk = b ). Предел функциональной 
последовательности {fk (x)}

f~( x) = Jim fk  (x) =k
a x x  + b 

x  + c ^ ’
вычисляемый при любом фиксированном значе­
нии x е X \{-c^}, назовем предельной функцией 
нециклического итерационного процесса.

3.1. Комплексно-сопряженные корни 
Преобразовав (17) к  виду

f k(x)
= (Уac -  b(cos a  + sin a  • c tgka) -  c)x + b

x  + У ac -  b(cos a  + sin a  • ctgk a ) -  a ’ 
заключаем, что существование предельной функ­
ции /Ц  x) равносильно существованию конечно­
го или бесконечного предела

lim ctgk  a  = lim ctg(k  лВ).k k

В силу иррациональности в последователь­
ность {ctg(knP)} определена при всех k  е N.

Теорема 3 [7, с. 121]. Если ^ — любое иррацио­
нальное число, то бесконечная последовательность 
xn =  n^ , n =  1 , 2 , ..., равномерно распределена по мо­
дулю 1 .

Следствие [7, с. 122]. Если ^ — любое иррацио­
нальное число, то последовательность дробных ча­
стей a n =  n^ — [n^], n =  1 , 2 , ... всюду плотна в еди­
ничном интервале.

Отсюда следует, что если взять произволь­
ны е Q, е (0; 1))\Q, ^' ^  ^”, то найдутся последо­
вательности натуральных чисел {nk} и {mk}, та­
кие что nkp = [nkp] + £' + 6 k и mkp = [mkp] + + Yk ,
где 6 k и Yk — б ескон еч н о  м алы е при  k  . 
Тогда lim  ctg(nkпР) = ctgn^' и lim  ctg(mkпР) =k k
= ctgn^" Ф ctgn^'. Следовательно, lim  ctg(kпР)
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не существует (ни число, ни бесконечность). 
Итерационный процесс расходится.

3.2. Действительные кратные корни
При вычислении пределов (26) берем коэф ф и­

циенты ak и ck из (15).

Предельные значения коэффициентов: a» = a — c

c» = c— a ; предельная функция: f»  (x) = a— c = a»

x  e X \{—c»}.
При k  центры ( -c k,ak) гипербол f k(x),

двигаясь по прямой x  + y  = a — c, сходятся к  точке 
(-cM, о»), сама же функция f k (x) в пределе вырож­
дается в константу (сходимость f k(x) ^  f» (x ) = a» 
на X \{ -c»} является неравномерной из-за точек 
бесконечного разрыва x  = -c k).

3.3. Действительные различные корни
Коэффициенты k -й итерации (18) находим из 

формулы (13)
k+ 1 
'2

Л k + 1 Л 1А1 — А
л k л k
А 1 — А 2

■c, ck

bk = b.

k+ 1 
2

л k+ 1 л .А1 — А
л k л k
А 1 — А 2

■ a,

А k+ 1  А k+ 1Для вычисления предела дроби ------ 2—  поде-л k л k
А 1 — А 2

л kлим ее числитель и знаменатель на А2 при 
|А1 | < |А2 | и, соответственно, на А* при |А1 | > |А2 | и 
воспользуемся пределом lim  q = 0 , |q| < 1  (случаиk
|А1 | = |А2 | рассмотрены в пп. 3.1—2). Так как 
|А1 | > |А2 | ^  a + c > 0 , то в зависимости от знака

выражения a + c получаются следующие резуль­
таты.

3.3.1. a + c > 0.
Предельные значения коэффициентов:

a» = ■a — c + Va
2

c» = c — a + Va .

функция: f»(x) = 

3.3.2. a + c < 0.

a — c + 4a
2

предельная

= a» , x e X \{—c»}.

Предельные значения коэффициентов:

a» = a — c ■■ 4a
2

c» = c — a ■ 4a .
2

функция: f»(x) = a— c— —  = a» , x e

предельная 

X \{—c »}.

В каждом из случаев 3.3.1—2 при k  ^  »  цен­
тры (—ck, ak) гипербол f k (x), двигаясь по прямой 
x + y  = a — c, сходятся к  точке (—c» ,a» ), сама же 
последовательность {fk (x)} сходится неравномер­
но на X \{—c»} к  константе a».
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Abstract—Functional iterative processes f k(x) = f ( f k—1 (x)), k  = 2,3,..., where the initial function 
f i( x) = f  (x) belongs to the class of non-degenerate linear fractional functions are considered. The aim of 
this work is to study all types of iterative processes that arise when the parameters are varied. To solve the ap­
pearing recurrence relations, matrix methods and complex numbers are used. Formulas for the coefficients 
of the kth iteration for any k depending on the coefficients of the initial function are obtained in the general
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form. Two invariants of iterative processes are defined. It is shown that cycles of the length n > 2 can exist only 
for complex conjugate eigenvalues of the coefficient matrix of a linear-fractional function. All initial functions 
that generate cycles of an arbitrary given length are found and explicit expressions are obtained for the coef­
ficients of any element of the cycle in terms of the coefficients of the initial function. An example of a cycle 
of the maximum length n = 6 , where all the coefficients of each iteration are integers, is given. For non-cyclic 
processes, the behavior of the kth iteration is studied for к  ̂  ^  and limit functions are determined in the cases 
of convergence. Non-cyclic iterative processes are divided into converging (real eigenvalues) and diverging 
(complex conjugate values that do not satisfy cyclic conditions). Converging iterations have a constant func­
tion as their limit function.

Keywords: linear-fractional functions, iterations, iterative processes, cycles, eigenvalues
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