Preview

Вестник НИЯУ МИФИ

Расширенный поиск

Метод Мельникова для обобщенного уравнения Дуффинга

https://doi.org/10.1134/S2304487X21020073

Аннотация

Об авторах

С. Ф. Лаврова
Национальный исследовательский ядерный университет МИФИ
Россия

115409

Москва



Н. А. Кудряшов
Национальный исследовательский ядерный университет МИФИ
Россия

115409

Москва



Список литературы

1. Biswas A. Optical soliton perturbation with Radhakrishnan–Kundu–Lakshmanan equation by traveling wave hypothesis // Optik. 2018. V. 171. P. 217–220.

2. Lavrova S. F., Kudryashov N. A. Nelinejnye dinamicheskie processy, opisyvaemye sistemoj uravnenij Radhakrishnana–Kundu–Lakshmanana [Nonlinear dynamic processes described by the Radhakrishnan-Kundu–Lakshmanan equations] // Vestnik NIYaU MIFI. 2020. V. 9. № 1. P. 45–49. (in Russian)

3. Kudryashov N. A., Safonova D. V., Biswas A. Painlevé Analysis and a Solution to the Traveling Wave Reduction of the Radhakrishnan–Kundu–Lakshmanan Equation // Regular and Chaotic Dynamics. 2019. V. 24. № 6. P. 607–614.

4. Triki H., Biswas A. Sub pico-second chirped envelope solitons and conservation laws in monomode optical fibers for a new derivative nonlinear Schrödinger’s model // Optik. 2018. V. 173. P. 235–241.

5. Kudryashov N. A. First integrals and solutions of the traveling wave reduction for the Triki–Biswas equation // Optik. 2019. V. 185. P. 275–281.

6. Kudryashov N. A. General solution of the traveling wave reduction for the perturbed Chen–Lee–Liu equation // Optik. 2019. V. 186. P. 339–349.

7. Biswas A. Chirp-free bright optical soliton perturbation with Chen–Lee–Liu equation by traveling wave hypothesis and semi-inverse variational principle // Optik. 2018. V. 172. P. 772–776.

8. Zayed E. M., Shohib R. M. Optical solitons and other solutions to Biswas–Arshed equation using the extended simplest equation method // Optik. 2019. V. 185. P. 626–635.

9. Ekici M., Sonmezoglu A. Optical solitons with Biswas–Arshed equation by extended trial function method // Optik. 2019. V. 177. P. 13–20.

10. Kudryashov N. A. A generalized model for description of propagation pulses in optical fiber // Optik. 2019. V. 189. P. 42–52.

11. Yin J., Zhao L. Dynamical behaviors of the shock compacton in the nonlinearly Schrödinger equation with a source term // Physics Letters A. 2014. V. 378. P. 3516–3522.

12. Yin J., Tang W. K. Perturbation-induced chaos in non-linear Schrödinger equation with single source and its characterization // Nonlinear Dynamics. 2017. V. 90. P. 1481–1490.

13. Mel’nikov V. K. On the stability of a center for time-periodic perturbations // Trudy moskovskogo matematicheskogo obshchestva. 1963. V. 12. P. 3–52. (in Russian)

14. Guckenheimer J., Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer Science & Business Media, 2013.

15. Wiggins S. Introduction to applied nonlinear dynamical systems and chaos. Springer Science & Business Media, 2003.


Рецензия

Для цитирования:


Лаврова С.Ф., Кудряшов Н.А. Метод Мельникова для обобщенного уравнения Дуффинга. Вестник НИЯУ МИФИ. 2021;10(2):135-142. https://doi.org/10.1134/S2304487X21020073

For citation:


Lavrova S.F., Kudryashov N.A. Melnikov Method for the Generalized Duffing Equation. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2021;10(2):135-142. (In Russ.) https://doi.org/10.1134/S2304487X21020073

Просмотров: 195


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)