Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

CFD Modeling of the Thermophysical Parameters of a Furnace for the Carbothermal Synthesis of Uranium and Plutonium Nitrides

https://doi.org/10.1134/S2304487X21020103

Abstract

   The temperature distribution, gas flow pattern and velocity in the reaction zone of a furnace for the carbothermal synthesis of uranium and plutonium nitrides have been numerically analyzed. The heater temperature, flow rate and temperature of the gas supplied to the furnace retort are the input data for the analysis. The analysis is performed using a CFD model of the furnace developed and validated for the isothermal holding and transient modes of the furnace. The CFD model takes into account two specific features of the carbothermal synthesis reaction of uranium and plutonium nitrides such as a change in the thermophysical properties of the charge in the process of transformation of UO2 and PuO2 into (U, Pu)N, and heat release during the exothermic reaction. The furnace has a fairly wide range of process parameters, which make it possible to ensure the temperature of the entire volume of the charge within the range of (1650 ± 50)°С for the carbothermal synthesis of uranium and plutonium nitrides. It has been shown that the maximum temperature unevenness in the charge volume does not exceed 65°C. The analysis of the gas flow pattern inside the retort shows that the delivery of nitrogen and nitrogen-hydrogen mixture to the reaction zone of the entire volume of the charge, as well as the removal of gaseous reaction products from the retort, is ensured. Since the gas flow rate and the temperature do not significantly affect the charge temperature inside the retort, these parameters should be selected taking into account the optimal behavior of the chemical carbothermal reaction for the synthesis of uranium and plutonium nitrides. The results of the numerical analysis illustrate the capabilities of CFD modeling of thermophysical processes inside the retort furnace at the equipment development stage and at the stages of selection and justification of the furnace operation modes.

About the Authors

R. N. Shamsutdinov
Sosny R&D Company; Dimitrovgrad Engineering and Technological Institute, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

433507

Ul’yanovskaya oblast

Dimitrovgrad



S. V. Pavlov
Sosny R&D Company; Dimitrovgrad Engineering and Technological Institute, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

433507

Ul’yanovskaya oblast

Dimitrovgrad



A. Yu. Leshchenko
Sosny R&D Company
Russian Federation

433507

Ul’yanovskaya oblast

Dimitrovgrad



M. I. Ilyashik
Proryv Company
Russian Federation

107140

Moscow



M. K. Gorbachev
Proryv Company
Russian Federation

107140

Moscow



References

1. Rachkov V. I., Adamov E. O., Lopatkin A. V., Pershukov V. A., Troyanov V. M. Fast Reactor Development Programme in the Russian Federation // Proceedings of an International Conference on Fast Reactors and related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13). Paris, 2013. P. 93–102.

2. Adamov E. O. Closed fuel cycle technologies based on fast reactors as the corner stone for sustainable development of nuclear power // Proceedings of an International conference on fast reactors and related fuel cycles: next generation nuclear systems for sustainable development (FR17). Yekaterinburg, 2017. P. 17–34.

3. Adamov E. O., Rachkov V. I. New technological platform for the national nuclear energy strategy development // Thermal engineering. 2017. V. 64. № 13. P. 945–951.

4. Troyanov V. M., Grachev A. F., Zabud’ko L. M. Skupov M. V., Perspektivy ispol’zovaniya nitridnogo topliva v bystryh reaktorah s zamknutym toplivnym ciklom [Prospects for using nitride fuel in fast reactors with a closed fuel cycle], Atomic Energy, 2014, vol. 117, no. 2, pp. 69–75. (in Russian)

5. Grachev A. F., Zabud’ko L. M., Glushenkov A. E., Ivanov Y. A., Kireev G. A., Skupov M. V., Gil’mutdinov I. F., Grin’ P. I., Zvir E. A, Kryukov F. N., Nikitin O. N., Issledovaniya smeshannogo nitridnogo uran-plutonievogo topliva v ramkah proekta “PRORYV” [Investigations of Mixed Uranium-Plutonium Nitride Fuel in Project Breakthrough], Atomic Energy, 2017, vol. 122, no. 3, pp. 185–199. (in Russian)

6. Denisov A. L., Reynaud V., Smirnov V. P., Pavlov S. V., Renard F, Chamovskih Y. V., Sergeev N. G., Shkurin P. A., Davydov A. V., Glushenkov A. E. Key features of design, manufacturing and implementation of laboratory and industrial equipment for Mixed Uranium-Plutonium Oxide (MOX) and Nitride fuel pellets fabrication in Russia // Proceedings of an International Conference on fast reactors and related fuel cycles: next generation nuclear systems for sustainable development (FR17). Yekaterinburg, 2017.

7. Smirnov V. P., Pavlov S. V., Ivanov D. V., Shamsutdinov R. N., Injutin N. V., Sidorenko D. M., Solopeko A. V., Sajfutdinov S. Ju., Davydov A. V., Chamovskih Yu. V., Sergeev N. G., Zozulja D. V., Ustanovka karbotermicheskogo sinteza nitridov dlya proizvodstva smeshannogo nitridnogo uran-plutonievogo topliva [Carbothermal Facility for the Synthesis of Nitrides for Mixed Uranium-Plutonium Fuel Production], Atomic energy, 2019, vol. 125, no. 5, pp. 322–325. (in Russian)

8. Shamsutdinov R. N., Pavlov S. V., Leshchenko A. Yu., Razrabotka i verifikaciya CFD-modeli pechi karbotermicheskogo sinteza nitridov urana i plutoniya [Development and verification of CFD model of carbothermal synthesis furnace for production of mixed nitride uranium-plutonium fuel], Nuclear Energy and Technology, 2020, vol. 6, no. 1, pp. 37–42. (in Russian)

9. Aljamovskij A. A., Sobachkin A. A., Odincov E. V., Haritonovich A. I., Ponomarev N. B., SolidWorks. Komp’juternoe modelirovanie v inzhenernoj praktike [SolidWorks. Computer modeling in engineering practice], SPb.: BHV-Peterburg, 2005, p. 800.

10. Sobachkin A., Dumnov G. Numerical basis of CAD-embedded CFD. Dassault systems, 2014. P. 19.

11. Wilcox D. C. Turbulence Modeling for CFD. La Canada, California: DCW Industries, 1998. P. 460.

12. Roache P. J. Fundamentals of computational fluid dynamics. Albuquerque, New Mexico: Hermosa Publishers, 1998. P. 648.

13. Bardelle P., Warin D. Mechanism and kinetics of the uranium-plutonium mononitride synthesis // Journal of Nuclear Materials. 1992. V. 188. P. 36–42.

14. Pavlov S. V., Shamsutdinov R. N., Moiseev V. S., Programma dlya rascheta temperatury v retortnoy sadochnoy pechi [Temperature calculation program for retort batch furnace], The certificate of Russian Federal Service for Intellectual Property no. 2020610998, 2020.


Review

For citations:


Shamsutdinov R.N., Pavlov S.V., Leshchenko A.Yu., Ilyashik M.I., Gorbachev M.K. CFD Modeling of the Thermophysical Parameters of a Furnace for the Carbothermal Synthesis of Uranium and Plutonium Nitrides. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2021;10(2):151-161. (In Russ.) https://doi.org/10.1134/S2304487X21020103

Views: 156


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)