Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

THE NOISES INFLUENCE ESTIMATION OF INERTIAL SENSORS ON THE ACCURACY OF THE GYROSCOPIC PLATFORM EXHIBITION

https://doi.org/10.26583/vestnik.2022.16

Abstract

This article discusses the features of solving the problem of an autonomous initial exhibition of a platform inertial navigation system under the influence of noise from inertial sensors (gyroscopes and accelerometers). The well-known classical algorithm of the initial exhibition, including the stages of rough exhibition, leveling and gyrocompassing, has extensive application and is described in sufficient detail in the technical literature. Its key disadvantage is the significant time spent on carrying out all these stages. In this regard, in order to increase the speed of the initial exhibition at a given level of accuracy, it is proposed to use a new algorithm combining the above-mentioned stages and based on the use of multifactor optimization methods. Based on the readings of at least three gyroscopes and at least three accelerometers, the spatial position of the gyro platform is optimized by physically bringing it to the required initial position. The algorithm is based on the method of gradient descent with variable pitch. Simulation modeling of a two-stage algorithm and an optimization algorithm in undisturbed mode and under the influence of typical noise for inertial sensors as the main source of errors during the initial exhibition is carried out. Typical noises, their displays in the frequency and time domains, and their distinctive features are presented. A significant gain in the speed of the optimization algorithm opens up broad prospects for its application, since the arsenal of appropriate methods is multifaceted, but the strong dependence of the accuracy of the exhibition on typical noise requires the development of additional mechanisms for their suppression.

About the Authors

V. P. Naumchenko
Branch of JSC «TsENKI» - Research Institute of PM them. academician V.I. Kuznetsova
Russian Federation


P. A. Ilyushin
Branch of JSC «TsENKI» - Research Institute of PM them. academician V.I. Kuznetsova
Russian Federation


D. G. Pikunov
Branch of JSC «TsENKI» - Research Institute of PM them. academician V.I. Kuznetsova
Russian Federation


A. V. Soloviev
Branch of JSC «TsENKI» - Research Institute of PM them. academician V.I. Kuznetsova
Russian Federation


References

1. Delay F. Bortovaya inercial'naya sistema koordinat SpaceNaute® dlya evropejskoj rakety-nositelya «Arian-6» na osnove volnovogo tverdotel'nogo giroskopa [Onboard inertial coordinate system SpaceNaute ® for the European launch vehicle «Ariane-6» based on a wave solid-state gyroscope]. Gyroscopy and navigation. 2018. Vol. 26. No. 4. Р. 3–13 (in Russian).

2. Mikhailov N.V. Avtonomnaya navigaciya kosmicheskih apparatov pri pomoshchi sputnikovyh radionavigacionnyh sistem [Autonomous navigation of spacecraft using satellite radio navigation systems]. St. Petersburg: Politekhnika Publ. 2014. 362 p.

3. Marareskul D.I. Sposob povysheniya dostupnosti navigacionnogo obespecheniya vysokoorbital'nyh kosmicheskih apparatov po GLONASS [A way to increase the availability of navigation support for high-orbit spacecraft according to GLONASS]. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva. 2013. No. 6 (52). Р. 82–88 (in Russian).

4. Schmidt J.T. Ekspluataciya navigacionnyh sistem na osnove GPS v slozhnyh usloviyah okruzhayushchej sredy [Operation of GPS-based navigation systems in difficult environmental conditions]. Giroskopiya i navigaciya. 2019. No. 1 (104). Р. 3–21 (in Russian).

5. Peshekhonov V.G. Vysokotochnaya navigaciya bez ispol'zovaniya informacii global'nyh navigacionnyh sputnikovyh sistem [High-precision navigation without using information from global navigation satellite systems]. Giroskopiya i navigaciya. 2022. Vol. 30. No. 1 (116). Р. 3–11 (in Russian).

6. Belinskaya E.V., Kobeleva A.A., Smetanin P.S., Elyashev Ya.D., Chernyak M.E. Sravnenie effektov strukturnyh povrezhdenij v matricah KMOP i PZS, primenyaemyh v zvyozdnyh datchikah, na primere cmv4000 i FPPZ «LEV-4» [Comparison of structural damage effects in CMOS and CCD matrices used in stellar sensors, on the example of cmv4000 and FPPZ «LEV-4»]. Covremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. Vol. 15. No. 6. 2018. P. 119–130 (in Russian).

7. Avanesov G.A., Bessonov R.V., Smetanin P.S., Filippova O.V., Elyashev Ya.D. Osobennosti izmereniya koordinat zvezd optiko-elektronnymi priborami s razlichnymi uglovymi razresheniyami [Features of measuring the coordinates of stars with optoelectronic devices with different angular resolutions]. Covremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. 2018. Vol. 15. No. 6. P. 103–112 (Ii Russian).

8. Prokhorov M.E., Zakharov A.I., Zhukov A.O., Gladyshev A.I., Kuznetsova I.V. O vozmozhnosti avtonomnogo opredeleniya orbity kosmicheskogo apparata [On the possibility of autonomous determination of the orbit of a spacecraft]. Covremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. 2018. Vol. 15. No. 6. P. 267–273 (in Russian).

9. Prokhorov M.E., Zakharov A.I., Mironov A.V., Nikolaev F.N., Tuchin M.S. Sovremennye datchiki zvezdnoj orientacii [Modern sensors of stellar orientation]. Fizika Kosmosa: Trudy 38 mezhdunarodnoj studencheskoj nauchnoj konferencii. 2009. P. 170–186 (in Russian).

10. Aleshin B.S., Tyuvin A.V., Chernomorsky A.I., Plekhanov V.E. Proektirovanie besplatformennyh inercial'nyh navigacionnyh system [Design of free-form inertial navigation systems]. Moscow, MAI-Print Publ. 2009. 396 p.

11. Lipton A. Vystavka inercial'nyh sistem na podvizhnom osnovanii [Exhibition of inertial systems on a movable base]. Moscow, Nauka Publ. 1971. 168 p.

12. Rivkin S.S., Ivanovsky R.I., Kostrov A.V. Statisticheskaya optimizaciya navigacionnyh sistem. [Statistical optimization of navigation systems]. Leningrad: Sudostroenie Publ. 1976. 280 p.

13. Andreev A.G., Ermakov V.S., Severov V.S., et al. Sposob nachal'noj vystavki inercial'noj navigacionnoj sistemy [Method of initial exhibition of an inertial navigation system]. Patent RF, no. 2215994 C1. IPC G 01 C 21/18. Applicant and patent holder of JSC PNPPK. No. 2002113869/28.

14. Naumchenko V.P. Podhod k postroeniyu algoritma nachal'noj vystavki inercial'nyh navigacionnyh system [Approach to the construction of the algorithm of the initial exhibition of inertial navigation systems]. Sbornik tezisov rabot mezhdunarodnoj molodyozhnoj nauchnoj konferencii XLVIII «Gagarinskie chteniya». 2022. P. 173–174 (in Russian).

15. Naumchenko V.P., Ilyushin P.A., Pikunov D.G., Soloviev A.V. Optimizaciya processa nachal'noj vystavki inercial'nyh navigacionnyh sistem [Optimization of the process of the initial exhibition of inertial navigation systems]. Molodezh'. Tekhnika. Kosmos: trudy chetyrnadcatoj obshcheros. molodezhn. nauch.-tekhn. konf. [Youth. Technic. Cosmos: Proceedings of the fourteenth General Conference. youth. science.-tech. conf. 2022 Vol. 2. P. 186–189 (in Russian).

16. Naumchenko V.P. Sovremennyj podhod postroeniya algoritma nachal'noj vystavki inercial'nyh navigacionnyh sistem platformennogo klassa [A modern approach to constructing an algorithm for the initial exhibition of inertial navigation systems of the platform class]. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem, 2022. No. 9. P. 51–59 (in Russian).

17. Belsky L.N., Vodicheva L.V., Parysheva Yu.V. Besplatformennaya inercial'naya navigacionnaya sistema dlya sredstv vyvedeniya: tochnost' nachal'noj vystavki i periodicheskaya kalibrovka [Free-form inertial navigation system for launch vehicles: accuracy of the initial exhibition and periodic calibration]. Yubilejnaya XXV Sankt-Peterburgskaya mezhdunarodnaya konferenciya po integrirovannym navigacionnym sistemam [Jubilee XXV St. Petersburg International Conference on Integrated Navigation Systems]. 2018. P. 260–263 (in Russian).

18. Emeliantsev G.I., Stepanov A.P., Blazhnov B.A. O nachal'noj vystavke korabel'noj BINS v usloviyah kachki [About the initial exhibition of shipboard BINS in conditions of pitching]. Giroskopiya i navigaciya. 2020. Vol. 28. No. 3 (110). P. 3–17 (in Russian).

19. Ilyushin P.A., Naumchenko V.P., Soloviev A.V. Analiz shumovyh harakteristik besplatformennogo inercial'nogo bloka kosmicheskogo naznacheniya [Analysis of noise characteristics of a strapless inertial block for space purposes]. Tezisy dokladov XXII Nauchno-tekhnicheskoj konferencii, posvyashchennoj 60-letiyu poleta YU.A. Gagarina, 75-letiyu raketno-kosmicheskoj otrasli i osnovaniyu PAO «RKK «Energiya». Korolev. Sbornik tezisov dokladov [Abstracts of the XXII Scientific and Technical Conference dedicated to the 60th anniversary of Yuri Gagarin's flight, the 75th anniversary of the rocket and space industry and the founding of PJSC RSC Energia. Korolev. Collection of abstracts]. 2021. P. 261–263 (in Russian).

20. Litvin M.A., Malyugina A.A., Miller A.B., Stepanov A.N., Chikrin D.E. Tipy oshibok v inercial'nyh navigacionnyh sistemah i metody ih approksimacii [Types of errors in inertial navigation systems and methods of their approximation]. Informacionnye processy. 2014. Vol. 14. No. 4. Р. 326–339 (in Russian).

21. Petrova N.A., Polushkin V.M. Vidy pogreshnostej mikromekhanicheskih datchikov i metody ih analiza [Types of errors of micromechanical sensors and methods of their analysis], Inzhenernyj vestnik Dona. 2019. No. 1 (in Russian)

22. IEEE Standard Specification Fprmat Guide and Test Procedure fo Single-Axis Interferometric Fiber Optic Gyros. 2003. 77 p.

23. Novoselov A.S., Moskalev S.A., Panko A.A., Pospelov A.V., Nedopekin N.V., Luzgina O.N. O vozmozhnostyah vybora metoda ocenki drejfovyh harakteristik volnovyh tverdotel'nyh giroskopov GE 006 na osnove eksperimental'nogo podtverzhdeniya [On the possibilities of choosing a method for estimating the drift characteristics of GE 006 wave solid-state gyroscopes based on experimental confirmation]. Nadezhnost' i kachestvo slozhnyh sistem. 2021. No. 2. P. 53–61 (in Russian).

24. Tyumentsev Yu.V., Chernyshev A.V. Obuchenie nejronnyh setej pryamogo rasprostraneniya: Uchebnoe posobie. [Training of neural networks of direct propagation: a textbook]. M.: MAI Publ. 2012. 48 p.

25. Naumchenko V.P. Postroenie algoritma girokompasirovaniya na osnove metodov odnomernoj bezuslovnoj optimizacii pri pomoshchi girokompasa analiticheskogo tipa s DUS [Constructing a gyrocompassing algorithm based on one-dimensional unconditional optimization methods using an analytical type gyrocompass with DUS]. Sbornik tezisov rabot mezhdunarodnoj molodezhnoj nauchnoj konferencii XLVII Gagarinskie chteniya [Collection of abstracts of the international Youth scientific conference XLVII Gagarin Readings], 2021. Р. 319–320 (in Russian).

26. Golovanov V.A. Giroskopicheskoe orientirovanie: ucheb. posobie [Gyroscopic orientation: Textbook. Stipend]. St. Petersburg, SPGGI Publ. 2004. 92 p.

27. Artillerijskie girokompasy: kurs lekcij [Artillery gyrocompasses: a course of lectures]. St. Petersburg State University of Information Technologies, Mechanics and Optics. Spb. 2010. 104 p.

28. Boronakhin A.M., Dao V. B., Le V. Ch., Ndayishimiye E. Girokompas s kvazigarmonicheskoj avto¬kompensacionnoj podstavkoj [Gyrocompass with quasi-harmonic autocompensation stand]. Izvestiya SPBGETU LETI. 2018. No. 5. P. 82–88 (in Russian).


Review

For citations:


Naumchenko V.P., Ilyushin P.A., Pikunov D.G., Soloviev A.V. THE NOISES INFLUENCE ESTIMATION OF INERTIAL SENSORS ON THE ACCURACY OF THE GYROSCOPIC PLATFORM EXHIBITION. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2022;11(6):425-441. (In Russ.) https://doi.org/10.26583/vestnik.2022.16

Views: 220


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)