Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Analytical and Numerical Solution of the Generalized Nonlinear Schrödinger Equation with an Arbitrary Refractive Index

https://doi.org/10.1134/S2304487X21050072

Abstract

   The propagation of solitary waves described by the generalized nonlinear Schrödinger equation with an arbitrary refractive index is investigated. The Cauchy problem for the considered equation cannot be solved; for this reason, traveling wave variables are used to find an analytical solution. These variables reduce the partial differential equation to a system of nonlinear ordinary differential equations. A solution of the resulting system of differential equations in the form of solitary waves is found using the simplest equation method. The numerical solution is constructed taking into account the discretization of the problem in time variable using a split-step method and by means of a finite difference in the space variable. The found analytical solution is used to verify the numerical solution of the solitary wave propagation problem described by the generalized nonlinear Schrödinger equation with periodic boundary conditions. Analytical and numerical solutions are plotted and these plots are analyzed taking into consideration the constraints on the parameters of the mathematical model.

About the Authors

K. V. Kan
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



N. A. Kudryashov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



References

1. Agraval G., Nelinejnaya volokonnaya optika [Nonlinear fiber optics], Moscow, Mir Publ., 1996, 323 p.

2. Biswas A., Ullah M., Zhou Qin, Moshokoa S., Triki H., Belic M. Resonant optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle // Optik. 2017. V. 145. P. 18–21.

3. Ekici M., Zhou Qin, Sonmezoglu A., Moshokoa S., Ullah M., Bismas A., Belic M. Solitons in magneto-optic waveguides by extended trial function scheme // Superlattices and Microstructures. 2017. V. 107. P. 197–218.

4. Biswas A. et al. Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations // Optik. 2017. V. 145. P. 14–17.

5. Biswas A. et al. Conservation laws for cubic–quartic optical solitons in Kerr and power law media // Optik. 2017. V. 145. P. 650–654.

6. Kudryashov N. A. Optical solitons of mathematical model with arbitrary refractive index // Optik. 2020, V. 224. P. 165391.

7. Zayed, Elsayed M. E. et al. Optical solitons in fiber Bragg gratings having Kerr law of refractive index with extended Kudryashov’s method and new extended auxiliary equation approach // Chinese Journal of Physics. 2020. V. 66. P. 187–205.

8. Kan K. V., Kudryashov N. A., Vysokodispersnye solitony, opisyvaemye sistemoj nelinejnyh differencial’nyh uravnenij s uchetom Breggovskoj reshetki [Highly dispersed solitons described by a system of nonlinear differential equations taking into account the Bregg lattice], Vestnik NIYaU MIFI, 2020, vol. 9, no. 3, pp. 210–216.

9. Kan K. V., Kudryashov N. A. Solitary waves described by a high-order system in optical fiber Bragg gratings with arbitrary refractive index // Mathematical Methods in the Applied Sciences. 2021.

10. Kivshar’ Yu. S., Agraval G. P., Opticheskie solitony. Ot volokonnyh svetovodov do fotonnyh kristallov / Per. s angl. pod red. N. N. Rozanova [Optical solitons. From fiber light guides to photonic crystals], Moscow, FIZMATLIT Publ., 2005, 648 p. ISBN 5-9221-0584-1.

11. Delfour M., Fortin M., Payr G. Finite-difference solutions of a non-linear Schrödinger equation // Journal of computational physics. 1981. V. 44.2. P. 277–288.

12. Taha Thiab R., Xu X. Parallel split-step fourier methods for the coupled nonlinear Schrödinger type equations // The Journal of Supercomputing. 2005. V. 32.1. P. 5–23.

13. Kudryashov N. A., Lavrova S. F. Dynamical properties of the generalized model for description of propagation pulses in optical fiber with arbitrary refractive index // Optik. 2021. V. 245. 167679.

14. Weideman J. A. C., Herbst B. M. Split-step methods for the solution of the nonlinear Schrödinger equation // SIAM Journal on Numerical Analysis, 1986. V. 23.3. P. 485–507.

15. Kudryashov N. A. Simplest equation method to look for exact solutions of nonlinear differential equations // Chaos, Solitons & Fractals. 2005. V. 24.5. P. 1217–1231.


Review

For citations:


Kan K.V., Kudryashov N.A. Analytical and Numerical Solution of the Generalized Nonlinear Schrödinger Equation with an Arbitrary Refractive Index. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2021;10(5):412-417. (In Russ.) https://doi.org/10.1134/S2304487X21050072

Views: 215


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)