Optimal Control Based on a Linear-Quadratic Regulator for Controlling a Nuclear Reactor
https://doi.org/10.1134/S2304487X21050023
Abstract
Nuclear reactors are widely used in various fields of human activity, for example, for the production of electricity, the production of isotopes, for educational and research purposes, as well as in space engines. Despite their useful purpose, they pose a danger to humans and society due to hazardous radionuclides generated during operation. Therefore, it is imperative to perform actions that reduce the release of radionuclides into the environment. These activities include operating a nuclear reactor under stable conditions and complete control over the system. In this study, the control of the nuclear reactor using a linear-quadratic regulator of the optimal control method is carried out using a nonlinear model of the rigid-point kinetic equation with one group delayed neutron. First, it is shown that the nuclear reactor is asymptotically unstable. Moreover, there are unlimited input and limited output. As a result, a proportional gain compensator is applied to the system to form a closed loop system that stabilizes the system. In addition, the system takes into account reactivity feedback by combining the equations of point kinetics and additional equations of thermal hydraulics. The simulated equation is linearized and a linear quadratic control strategy is applied to achieve performance specifications such as minimum overshoot, settling time, and system stabilization. The simulation results have been confirmed by previous studies.
About the Authors
K. K. AbdulrahimRussian Federation
115409
Moscow
Nigeria
900288
Abuja
Email address: kabdulrakhim@mephi.ru
A. O. Tolokonskiy
Russian Federation
115409
Moscow
Z. Laidani
Russian Federation
115409
Moscow
R. Berreksi
Russian Federation
115409
Moscow
References
1. Ben-Abdennour A., Lee K. Y., Edwards R. M. LQG / LTR Robust Control of Nuclear Reactors with Improved Temperature Performance // IEEE Trans. Nucl. Sci. 1992. V. 39. P. 2286–2294. doi: 10.1109/23.211438
2. Kinard M., Allen E. J. Efficient numerical solution of the point kinetics equations in nuclear reactor dynamics // Ann. Nucl. Energy. 2004. V. 31. P. 1039–1051. doi: 10.1016/j.anucene.2003.12.008
3. Duderstadt J. J. Nuclear reactor analysis. Wiley, 1976.
4. Hetrick D. L. Dynamics of nuclear reactors. University of Chicago Press, 1971.
5. Ansarifar G. R., Akhavan H. R. Sliding mode control design for a PWR nuclear reactor using sliding mode observer during load following operation // Ann. Nucl. Energy. 2015. V. 75. P. 611–619. doi: 10.1016/j.anucene.2014.09.019
6. Ansarifar G. R., Saadatzi S. Sliding Mode Control for Pressurized-Water Nuclear Reactors in load following operations with bounded xenon oscillations // Ann. Nucl. Energy, 2015. V. 76. P. 209–217. doi: 10.1016/j.anucene.2014.09.059
7. Abdulraheem K. K., Andreevich S., Laidani Z. A differentiator based second-order sliding-mode control of a pressurized water nuclear research reactor considering Xenon concentration feedback // Ann. Nucl. Energy, 2021. V. 156. 108193. doi: 10.1016/j.anucene.2021.108193
8. Abdulraheem K. K., Korolev S. A. Robust optimal-integral sliding mode control for a pressurized water nuclear reactor in load following mode of operation // Ann. Nucl. Energy, 2021. V. 158. 108288. doi: 10.1016/j.anucene.2021.108288
9. Zaidabadi Nejad M., Ansarifar G. R. Robust feedback-linearization control for axial power distribution in pressurized water reactors during load-following operation // Nucl. Eng. Technol. 2018. V. 50. P. 97–106. doi: 10.1016/j.net.2017.10.013
10. Mousakazemi S. M. H., Ayoobian N., Ansarifar G. R. Control of the reactor core power in PWR using optimized PID controller with the real-coded GA // Ann. Nucl. Energy. 2018. V. 118. P. 107–121. doi: 10.1016/j.anucene.2018.03.038
11. Liu C., Peng J. F., Zhao F. Y., Li C. Design and optimization of fuzzy-PID controller for the nuclear reactor power control // Nucl. Eng. Des. 2009. V. 239. P. 2311–2316. doi: 10.1016/j.nucengdes.2009.07.001
12. Rafiei M., Ansarifar G. R., Hadad K. Core Power Control of a Nuclear Research Reactor during Power Maneuvering Transients Using Optimized PID-Controller Based on the Fractional Neutron Point Kinetics Model with Reactivity Feedback Effects // IEEE Trans. Nucl. Sci., 2019. V. 66. P. 1804–1812. doi: 10.1109/TNS.2019.2922374
13. Lee Y. J. The Control Rod Speed Design for the Nuclear Reactor Power Control Using Optimal Control Theory // Nucl. Eng. Technol. 1994. V. 26 (4). P. 536–547.
14. Arab-Alibeik H., Setayeshi S. Improved Temperature Control of a PWR Nuclear Reactor Using an LQG / LTR Based Controller // IEEE Trans. Nucl. Sci. 2003. V. 50. P. 211–218. doi: 10.1109/TNS.2002.807860
15. Saif M. A Novel Approach for Optimal Control of A Pressurized Water Reactor // IEEE Trans. Nucl. Sci. 1989. V. 36. P. 1317–1325. doi: 10.1109/TNS.1989.574131
16. Shimjith S. R., Tiwari A. P., Naskar M., Bandyopadhyay B. Space-time kinetics modeling of Advanced Heavy Water Reactor for control studies // Ann. Nucl. Energy. 2010. V. 37. P. 310–324. doi: 10.1016/j.anucene.2009.12.011
17. Theler G. G., Bonetto F. J. On the stability of the point reactor kinetics equations // Nucl. Eng. Des. 2010. V. 240. P. 1443–1449. doi: 10.1016/j.nucengdes.2010.03.007
18. Lewins J. Nuclear reactor kinetics and control. Elsevier, 2013.
19. Henry A. F. Nuclear Reactor Analysis. MIT Cambridge, 1975.
20. Stacey W. M. Nuclear Reactor Physics: Second Edition, 2007. doi: 10.1002/9783527611041
21. Bell S., Glasstone G. I. Nuclear reactor theory (No. TID-25606), US Atomic Energy Commission, Washington, DC (United States), 1970.
22. Obaidurrahman K., Doshi J. B. Spatial instability analysis in pressurized water reactors // Ann. Nucl. Energy. 2011. V. 38. P. 286–294. doi: 10.1016/j.anucene.2010.10.015
23. Burns R. Advanced control engineering. Elsevier, 2001.
24. Levine W. S. The Control Handbook (three volume set). CRC Press, 2018.
25. Stefani R. T. Design of feedback control systems. Oxford University Press, Inc., 1993.
Review
For citations:
Abdulrahim K.K., Tolokonskiy A.O., Laidani Z., Berreksi R. Optimal Control Based on a Linear-Quadratic Regulator for Controlling a Nuclear Reactor. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2021;10(5):436-447. (In Russ.) https://doi.org/10.1134/S2304487X21050023