Development of an Automatic Heating and Cooling System for the Heat Treatment of Gas Turbine Engine Disks
https://doi.org/10.1134/S2304487X21050084
Abstract
Gas turbine engines are complex devices that convert air and fuel into a gas–air mixture, which is used to create jet thrust. Gas turbine engine parts undergo increased loads, in particular, temperature loads. High-strength materials are used to manufacture these parts, and a class of heat-resistant nickel-based alloys are used for parts operating at high temperatures. Turbine discs for gas turbine engines with operating temperatures up to 800°C are one of the most heavily loaded parts. High demands are placed on disk heat-resistant alloys and their manufacturing process, including heat treatment. It is necessary to strictly control the technological parameters of the heat treatment mode, including the heat treatment temperature and the cooling rate of semi-finished products. The software for a control system for a given mode of a variable thermal profile is developed in this work. The structure of the system, its organization, and development and debugging stages are described. Algorithms have been developed to control heating of a muffle furnace and a cooling unit. The developed program allows the heat treatment of the stamping of the disk of a gas turbine engine according to a preselected mode. This makes it possible to obtain the required structure of a nickel-based deformable superalloy, which in turn significantly increases the operation characteristics.
About the Authors
P. B. RimshaRussian Federation
115409
Moscow
A. O. Tolokonskiy
Russian Federation
115409
Moscow
References
1. Kablov E. N., Innovacionnye razrabotki FGUP “VIAM” GNC RF po realizacii “Strategicheskih napravlenij razvitiya materialov i tekhnologij ih pererabotki na period do 2030 goda” [Innovative developments of FSUE “VIAM” SSC RF for the implementation of “Strategic directions for the development of materials and technologies for their processing for the period up to 2030”], Aviacionnye materialy i tekhnologii, 2015, no. 1, pp. 3–33 (in Russian).
2. Kablov E. N., Ospennikova O. G., Lomberg B. S., Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tekhnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashchego i budushchego [Strategic directions for the development of structural materials and technologies for their processing for aircraft engines of the present and future], Avtomaticheskaya svarka, 2013, no. 10, pp. 23–32 (in Russian).
3. Kablov E. N., Strategicheskie napravleniya razvitiya materialov i tekhnologij ih pererabotki na period do 2030 goda [Strategic directions for the development of materials and technologies for their processing for the period up to 2030], Aviacionnye materialy i tekhnologii, 2012, no. S, pp. 7–17 (in Russian).
4. Chabina E. B., Lomberg B. S., Filonova E. V., Ovsepyan S. V., Bakradze M. M., Izmenenie strukturno-fazovogo sostoyaniya zharoprochnogo deformiruemogo nikelevogo splava pri legirovanii tantalom i reniem [Changes in the structural-phase state of a heat-resistant wrought nickel alloy upon alloying with tantalum and rhenium], Trudy VIAM, 2015, no. 9, st. 03 URL: http://www.viam-works.ru (data obrashcheniya 26. 12. 2021 g.) (in Russian).
5. Galaktionov V. A., Dorodnicyn V. A., Elenin G. G., Kvazilinejnoe uravnenie teploprovodnosti s istochnikom: obostrenie, lokalizaciya, simmetriya, tochnye resheniya, asimptotiki, struktury [Quasilinear heat equation with a source: sharpening, localization, symmetry, exact solutions, asymptotics, structures], Itogi nauki i tekhniki. Seriya Sovremennye problemy matematika. Novye dostizheniya, 1986, no. 28, pp. 95–205 (in Russian).
6. Belyaev M. S., Terent’ev V. F., Gorbovec M. A., Bakradze M. M., Gol’dberg M. A., Malociklovaya ustalost’ pri zadannoj deformacii i parametry uprugo-plasticheskogo deformirovaniya zharoprochnogo splava VZH175 [Low-cycle fatigue at a given deformation and parameters of elastoplastic deformation of VZh175 heat-resistant alloy], Aviacionnye materialy i tekhnologii, 2014, no. S4, pp. 87–92 (in Russian).
7. Lebedev V. O., Rukovodstvo polzovatelya MWBridge MLB [MWBridge MLB user guide], 2020, 246 p. (in Russian)
8. Lebedev V. O., Ob optimalnoy structure compleksa tehnicheskih sredstv ASUTP [The complex of technical means of the process control system’s optimal structure], Avtomatizaciya v promyshlennosti, 2013, no. 7, pp. 64–67 (in Russian).
9. Kolodnikov I. A., Lebedev V. O., K voprosu ob arhitecture sovremennyh ASUTP [On the question of the modern process control systems architecture], Avtomatizaciya v promyshlennosti, 2018, no. 8, pp. 9–12 (in Russian).
10. Balakin B. V., Delov M. I., Kutsenko K. V., Lavrukhin A. A., Laouar S., Litvintsova Y. E., Marchenko A. S., Maslov Y. A. Analyzing temperature fluctuations to predict boiling regime // Thermal Science and Engineering Progress. 2017. V. 4. P. 219–222.
11. Patel A. R., Ramaiya K. K., Bhatia C. V., Shah H. N., Bhavsar S. N. Artificial Intelligence: Prospect in Mechanical Engineering Field – A Review.// Lecture Notes on Data Engineering and Communications Technologies, 2021. V. 52. P. 267–282.
12. Volodin V. S., Tolokonsky A. O. Implementation of the diversity principle of software and hardware complexes of process control systems for nuclear facilities in educational process // Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika, 2018. V. 2018. № 1. Q4. P. 154–164.
Review
For citations:
Rimsha P.B., Tolokonskiy A.O. Development of an Automatic Heating and Cooling System for the Heat Treatment of Gas Turbine Engine Disks. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2021;10(5):448-458. (In Russ.) https://doi.org/10.1134/S2304487X21050084