Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

PARAMETRIC IDENTIFICATION OF THE THERMAL CONDUCTIVITY COEFFICIENT UNDER HIGH-INTENSITY HEAT HEATING, TAKING INTO ACCOUNT THERMAL DECOMPOSITION

https://doi.org/10.26583/vestnik.2022.19

Abstract

One of the primary tasks of thermal design is the compilation of an adequate thermal physical and mathematical model to ensure its regular thermal regime. In this paper, we consider a sequential method for determining the complex of thermophysical characteristics as functions of temperature during its ground-based thermal processing in natural conditions. The test object is subjected to high-intensity unidirectional thermal heating, which is typical during the descent and exit of spacecraft from the atmosphere of various planets. This problem is solved as a problem of finding a global minimum from minimizing the root-mean-square error between the theoretical and experimental temperature field. The algorithm of conjugate directions is chosen as the minimization method, as the most accurate method of the first order of convergence. When designing the thermal regime of structures, it is necessary to have an idea of the initial boundary conditions of the product, as well as its thermophysical characteristics. Thus, the determination of the thermal conductivity coefficient of the material is the target task in ensuring the normal thermal regime of the product.

About the Author

N. O. Borshchev
Astrocosmic Center of the Federal State Institution of Science S.A. Lebedev Institute
Russian Federation


References

1. Borshchev N.O. Parametricheskaya identifikaciya sredneitegral'nogo koefficienta teplootdachi v aksial'nyh teplovyh trubah [Parametric identification of the mean integral heat transfer coefficient in axial heat pipes]. Vestnik Moskovskogo aviacionnogo instituta. 2022. Vol. 29. No. 3. P. 93–103 (in Russian).

2. Bassistov Yu.A., Yanovsky Yu.G. Nekorretnye zadachi v mekhanike (reologii) vyazkouprugih sred i ih regulyarizaciya [Uncorrected problems in mechanics (rheology) of viscoelastic media and their regularization]. Mekhanika kompozicionnyh materialov i konstrukcij. 2010. Vol. 16. No. 1. P. 117–143 (in Russian).

3. Bakushinsky A.B., Kokurin M.Yu., Kokurin M.M. Pryamye i obratnye teoremy dlya iteracionnyh metodov resheniya neregulyarnyh operatornyh uravnenij i raznostnyh metodov resheniya nekorrektnyh zadach Koshi [Direct and inverse theorems for iterative methods for solving irregular operator equations and difference methods for solving ill-posed Cauchy problems]. Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki. 2020. Vol. 60. No. 6. P. 939–962 (in Russian).

4. Bloch A.G., Zhuravlev Yu.A., Ryzhkov L.N. Teploobmen izlucheniem [Heat exchange by radiation]. M.: Enegoatomizdat Publ, 1991.

5. Vasin V.V. Modificirovannyj metod naiskorejshego spuska dlya nelinejnyh regulyarnyh operatornyh uravnenij [Modified steepest descent method for nonlinear regular operator equations]. Doklady Akademii nauk. 2015. Vol. 462. No. 3. P. 264 (in Russian).

6. Golichev I.I. Modificirovannyj gradientnyj metod naiskorejshego spuska resheniya neleniarizovannoj zadachi dlya nestacionarnyh uravnenij Nav'e-Stoksa [Modified gradient method of the steepest descent of the solution of the non-leniarized problem for non-stationary Navier-Stokes equations]. Ufimskij matematicheskij zhurnal. 2013. Vol. 5. No. 4, P. 60–76 (in Russian).

7. Zaletaev V.M., Kapinos Yu.V., Surguchev O.V. Raschet teploobmena kosmicheskogo apparata [Calculation of heat exchange of the spacecraft]. M.: Mashinostroenie Publ, 1979.

8. Oprzedkiewicz K., Mitkowski W. A memory-efficient noninteger-order discrete-time state –space modelof a heat transfer process. International Journal of Applied Mathematics and Computer Science. 2018. Vol. 28. No. 4. P. 649–659.

9. Investigation of heat transfer surfaces for space power systems / A.Y. Baranov, A.Y. Belov, D.N. Ilmov, N.N. Kazantseva, Y.N. Mamontov, A.S. Skorokhodov. Thermal Engineering. 2018. Vol. 65. No. 7. P. 473–481.

10. Alifanov O.M., Artyukhin E.A., Rumyantsev S.V. Ekstremal'nye metody resheniya nekorrektnyh zadach[Extreme methods of solving incorrect problems]. M.: Nauka. Gl. ed. phys.-mat. lit Publ, 1988. 288 p.

11. Alifanov O.M., Kolesnikov V.A. Opredelenie elementov tenzora teploprovodnosti anizotropnyh materialov iz resheniya obratnoj zadachi [Determination of the elements of the thermal conductivity tensor of anisotropic materials from the solution of the inverse problem]. Vestnik Moskovskogo aviacionnogo instituta. 2012. Vol. 58. No. 2. P. 1–13 (in Russian).

12. Borshchev N.O. Parametric identification jf the incident heat flux on the mirror elements of space observatories. Vestnik NIYaU MEFI, 2022. Vol. 11. No. 2. P. 101–108 (in Russian).

13. Teplovoe proektirovanie i pofragmentnaya nazemnaya otrabotka sistemy obespecheniya teplovogo rezhima kosmicheskogo apparata negermetichnogo ispolneniya na baze sotopanelej s teplovymi trubami [Thermal design and post-fragment ground testing of the system for ensuring the thermal regime of a non-pressurized spacecraft based on honeycomb panels with heat pipes] / R.M. Kopyatkevich, V.M. Gulya, D.V. Tulin, A.F. Shabarchin. Kosmonavtika i raketostroenie. 2010. iss. 3(60). P. 33–41 (in Russian).

14. Shaenko A.Yu., Milyutin D.S. Heat transfer in the radiation shields of large space telescopes. Doklady Physics. 2010. Vol. 55. No. 4. P. 172–175.

15. Kuznetsov G.V., Kozlobrodov A.N., Sandu S.F. Heat transfer in the instrument modules of space vehicles. Heat Transfer Research. 2003. Vol. 34. No. 1–2. P. 135–141.

16. Semena N.P. The use of scale models in ground tests reproducing heat transfer in space. Thermophysics and Aeromechanics. 2014. Vol. 21. No. 1. P. 45–55.

17. Testi D. Ion injection as an effective method of increasing heat transfer in space. Journal of Thermophysics and Heat Transfer. 2007. Vol. 21. No. 2. P. 431–436.

18. Baek Yu., Jung E.G. Characteristics of heat transfer of a contour heat pipe for spacecraft thermal regulation during bypass line operation. International Journal of Heat and Mass Transfer. 2022. Vol. 194. P. 123064.

19. Konovalov D.A., Kozhukhov N.N., Drozdov I.G. [Modeling of heat transfer processes in microchannel heat exchangers of space technology control systems]. Reshetnevskie chteniya. 2015. Vol. 1. Р. 203–205 (in Russian).

20. Fayazova Z.K. Boundary control of the heat transfer process in the space. Russian Mathematics. 2019. Vol. 63. No. 12. P. 71–79.

21. Volodin Yu.G., Dul'nev G.N. An investigation of heat transfer coefficient by the «half-space period». Journal of Engineering Physics. 1968. Vol. 9. No. 5. P. 383–385.

22. Issledovanie teploobmennyh poverhnostej dlya energeticheskih ustanovok kosmicheskogo naznacheniya [Investigation of heat exchange surfaces for space power plants] / A.E. Baranov, A.E. Belov, D.N. Ilmov, N.N. Ka¬zantseva, Yu.N. Mamontov, A.S. Skorokhodov. Teploenergetika. 2018. No. 7. Р. 76–85 (in Russian).


Review

For citations:


Borshchev N.O. PARAMETRIC IDENTIFICATION OF THE THERMAL CONDUCTIVITY COEFFICIENT UNDER HIGH-INTENSITY HEAT HEATING, TAKING INTO ACCOUNT THERMAL DECOMPOSITION. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2022;11(6):390-402. (In Russ.) https://doi.org/10.26583/vestnik.2022.19

Views: 181


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)