SCALING FACTORS AND ZERO OFFSETS OF THE MEMS ANGULAR VELOCITY SENSOR ESTIMATION USING A LINEAR DOUBLE KALMAN FILTER
https://doi.org/10.26583/vestnik.2023.20
Abstract
Calibration of the inertial sensors and the entire inertial measurement units (IMUs), as a rule, is carried out using special equipment such as turn-tables. However, for micromechanical (MEMS) modules, the use of such high-precision equipment is not reasonable due to high noise and varying parameters of measurement model for a particular device. Existing algorithmic solutions for calibrating MEMS IMUs either use an oversimplified IMU measurement model or require quite a lot of time to solve the problem. Therefore, this paper considers the application of a dual Kalman filter to the measurement model parameters estimation of a three-axis MEMS angular velocity sensor. The measurement model under consideration includes scale factors and sensor zero offsets. To solve the problem, several modifications are made to the classical dual Kalman filter. To confirm the applicability of the proposed algorithm, computational experiment was carried out, in which the IMU measurements are modeled according to the true known measurement model. The results of computational experiment have shown the applicability of the proposed approach and a sufficiently high accuracy of obtained estimates
About the Authors
A. P. EvdokimovaRussian Federation
Student, Automatic control systems Dept., Bauman Moscow State Technical University
A. L. Maslennikov
Russian Federation
Senior Lecturer, Automatic control systems Dept., Bauman Moscow State Technical University
References
1. Salychev O.S. Inertial Systems in Navigation and Geophysics. Moscow: Bauman MSTU Press, 1998, 352 p.
2. Bykovsky A.V. Calibration of a Strapdown Inertial Navigation System in the "Navigation" Mode. Aerospace Instrumentation, 2014, no. 1, p. 18–25. (in Russ.).
3. Bykovsky A.V., Chernikov S.A. Calibration of gyroscopes of a platform inertial system by single gyrocompassing. Aerospace instrumentation, 2015, no. 1, p. 3–7. (in Russ.).
4. Bykovsky A.V. Calibration method for a strapdown inertial navigation system. Bulletin of the Moscow State Technical University. N.E. Bauman. Instrument making series, 1999, no. 1, p. 14. (in Russ.).
5. Hwangbo M., Kanade T. Factorization-Based Calibration Method for MEMS Inertial Measurement Unit. IEEE International Conference on Robotics and Automation (ICRA), May 19-23, 2008. DOI:10.1109/ROBOT.2008.4543384.
6. Lee D., Lee S., Park S., Ko S. Test and Error Parameter Estimation for MEMS - Based Low Cost IMU Calibration. International Journal of Precision Engineering and Manufacturing, 12(4), 2011, p. 597 – 603. DOI:10.1007/s12541-011-0077-9.
7. Artese G., Trecroci A. Calibration of a Low-Cost MEMS Ins Sensor for an Integrated Navigation System. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. vol. XXXVII, part B5, Beijing, 2008.
8. Nez A., Fradet L., Languillaumie P., Monnet T., Lacouture P. Comparison of calibration methods for accelerometers used in human motion analysis. Medical engineering & physics, 38(11), 2016, pp.1289–1299.
9. Tedaldi D., Pretto A., Menegatti E. A Robust and Easy to Implement Method for IMU Calibration without External Equipment. IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 3042–3049.
10. Zhang H, Wu Y., Wu W., Wu M., Hu X. Improved multi-position calibration for inertial measurement units. Measurement Science and Technology, 21(1), 2009, p. 015107. DOI:10.1088/0957-0233/21/1/015107.
11. Fong W., Ong S., Nee A. Methods For In-Field User Calibration Of An Inertial Measurement Unit Without External Equipment. Measurement Science and Technology, 19(8), 2008, p. 085202.
12. Syed Z., Aggarwal P., Goodall C., Niu X., El-Sheimy N. New Multi-Position Calibration Method For Mems Inertial Navigation Systems. Measurement Science and Technology, 18(7), 2007, p. 1897. DOI:10.1088/0957-0233/18/7/016.
13. Skog I., Handel P. Calibration of a MEMS inertial measurement unit. XVII Imeko World Congress, 2006, p. 1–6.
14. Rebaudin V., Afzal M. H., Lachapelle G. Complete Triaxis Magnetometer Calibration in the Magnetic Domain. Journal of Sensors, vol. 2010, Article ID 967245, 10 pages. DOI:10.1155/2010/967245.
15. Gebre-Egziabher D., Elkaim G.H., Powell J.D., Parkinson B.W. Calibration of Strapdown Magnetometers in Magnetic Field Domain. Journal of Aerospace Engineering, 19(2), 2006, p. 87–102. DOI:10.1061/(ASCE)0893-1321(2006)19:2(87).
16. Markovsky I., Kukush A., Van Huffel S. Consistent Least Squares Fitting of ellipsoids. Numerische Mathematik, 98(1), 2004, p. 177–194. DOI:10.1007/s00211-004-0526-9.
17. Higham N., Hyun-Min Kim. Numerical Analysis of a Quadratic Matrix Equation. Ima Journal of Numerical Analysis, 20(4), 2000, p. 499–519. DOI:10.1093/imanum/20.4.499.
18. Ljung L., Söderström T. Theory and practice of recursive identification. MIT press; 1983, 529 p.
19. Ljung L. System Identification Theory for User. Upper Saddle River: Prentice-Hall, 1999, 631 p.
20. Haykin S. Kalman Filtering and Neural Networks. New York: John Wiley & Sons, 2001, 304 p.
Supplementary files
Review
For citations:
Evdokimova A.P., Maslennikov A.L. SCALING FACTORS AND ZERO OFFSETS OF THE MEMS ANGULAR VELOCITY SENSOR ESTIMATION USING A LINEAR DOUBLE KALMAN FILTER. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2023;12(1):9-19. (In Russ.) https://doi.org/10.26583/vestnik.2023.20