Ion Exchange Synthesis of Zinc Aluminate
https://doi.org/10.56304/S2304487X22010084
Abstract
It has been shown that zinc aluminate nanopowder can be obtained by the ion-exchange synthesis method, in which a pre-synthesized cation-exchange material is used as a matrix and ionite serves as an auxiliary phase. The sample obtained have been studied by X-ray phase analysis, differential thermal analysis, and scanning electron microscopy. According to the X-ray diffraction data, the ZnAl2O4 crystalline phase is formed, the beginning of which corresponds to an annealing temperature of 600 °C. The monophasic structure of zinc aluminate is formed at 1000 °C as a result of ion exchange synthesis. The main diffraction maxima for samples calcined at 700 °C and above indicate the formation of a spinel structure with the space group Fd3m. According to the electron microscopy data, the average crystallite size is 26 nm. The parameters of the spinel lattice are determined. Thermogravimetric analysis has shown the thermal stability of the material in the temperature range of 30–1000 °C. Scanning electron microscopy data have demonstrated that the proposed scheme of ion-exchange synthesis with a short heat treatment makes it possible to obtain particles with a size up to 100 nm with a high degree of homogenization of the target product and a uniform accumulation of chemical elements by weight. During prolonged heat treatment, the particles are prone to agglomeration.
About the Authors
A. V. SherginRussian Federation
454021
Chelyabinsk
E. A. Belaya
Russian Federation
454021
Chelyabinsk
A. M. Kolmogortsev
Russian Federation
115409
Moscow
D. A. Zherebtsov
Russian Federation
454080
Chelyabinsk
References
1. Betekhtin A. G. Kurs mineralogii [Mineralogy course]. Мoscow, KDU Publ., 2007. 720 p. (In Russian)
2. Mansoury D., Doshmanziari F. I. A comprehensive review of last experimental studies on thermal conductivity of nanofluids // Journal of Thermal Analysis and Calorimetry. 2018. № 135. P. 23–32.
3. Manjunath K., Reddy Yadav L. S., Jayalakshmi T., Reddy V., Rajanaika H., Nagaraju G. Ionic liquid assisted hydrothermal synthesis of TiO<sub>2</sub> nanoparticles: photocatalytic and antibacterial activity // Journal of Materials Research and Technology. 2018. № 7 (1). P. 7–13.
4. Ray J. C., Park D. W., Ahn W. S. Chemical synthesis of stabilized nanocrystalline zirconia powders // Journal of Industrial and Engineering Chemistry. 2006. № 12. P. 142–148.
5. Kumar Danith, Reddy Yadav L. S., Lingaraju K., Manjunath K., Suresh D., Prasad Daruka, Nagabhushana H., Sharma S. C., Raja Naika H., Chikkahanumantharayappa, Nagaraju G. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies // AIP Conference Proceedings. 2015. V. 1665 (1). P. 050145.
6. Lange F. F. Transformation toughening // Journal of Material Science. 1982. V. 17 (1). P. 240–246.
7. Zawadzki M., Wrzyszcz J. Hydrotermal synthesis of nanoporous zinc aluminate with high surface area // Materials Research Bulletin. 2000. V. 35 (1). P. 109–114.
8. Chen X. Y., Ma C., Zhang Z. J., Wang B. N. Ultrafine gahnite (ZnAl<sub>2</sub>O<sub>4</sub>) nanocrystals: Hydrotermal synthesis and photoluminescent properties // Materials Science and Engineering: B. 2008. V. 151 (3). P. 224–230.
9. Huang I. B., Chang Y. S., Chen H. L., Hwang C. C., Jian C. J., Chen Y. S., Tsai M. T. Preparation and luminescence of green-emitting ZnAl<sub>2</sub>O<sub>4</sub> : Mn<sup>2+</sup> phosphor thin films // Thin Solid Films. 2014. № 570. P. 451–456.
10. Kumar M., Gupta S. 0K., Kadam R. M. Near white light emitting ZnAl<sub>текст</sub>O<sub>4</sub>:Dy<sup>3+</sup> nanocrystals: sol–gel synthesis and luminescence studies // Materials Research Bulletin. 2016. V. 74. P. 182–187.
11. Wang N., Zhou H., Gong J., Fanand G., Chen X. Enhanced sinterability and microwave dielectric performance of (1-x)ZnAl<sub>2</sub>O<sub>4</sub>–xLi<sub>4/3</sub> Ti<sub>5/3</sub> O<sub>4</sub> ceramics // Journal of Electronic Materials. 2016. V. 45. P. 3157–3161.
12. Limayeand A. U., Helble J. J. Effect of precursor and solvent on morphology of zirconia nanoparticles produced by combustion aerosol synthesis // Journal of the American Ceramic Society. 2003. V. 86. P. 273–278.
13. Sudheer Kumar K. H., Dhananjaya N., Yadav L. S. R. E. Tirucalli plant latex mediated green combustion synthesis of ZnO nanoparticles: Structure, photoluminescence and photo-catalytic activities // Journal of Science Advanced Materials and Devices. 2018. V. 3 (3). P. 303–309.
14. Venkatesh R., Dhananjaya N., Sateesh M. K., Shabaaz Begum J. P., Yashodha S. R., Nagabhushana H., Shivakumara C. Effect of Li, Na, K cations on photoluminescence of GdAlO<sub>3</sub>:Eu<sup>3+</sup> nanophosphor and study of Li cation on its antimicrobial activity // Journal of Alloys and Compounds. 2018. № 732. P. 725–739.
15. Yadav Lakshmi S. R., Venkatesh R., Raghavendra M., Ramakrishnappa T., Dhananjaya N., Nagaraju G. Synthesis of nano ZnO: a catalyst for n-formylation of aromatic amines and biodiesel application // Current Nanomaterials. 2020. V. 5 (1). P. 66–78.
16. Belaya E. A., Gryaznova M. S., Kolmogortsev A. M. Ion-Exchange Synthesis of Nanosized Nickel Ferrite. Vestnik Natsional’nogo issledovatel’skogo yadernogo universiteta “MIFI”, 2018, vol. 7, no. 5, pp. 376–382. (In Russian)
Review
For citations:
Shergin A.V., Belaya E.A., Kolmogortsev A.M., Zherebtsov D.A. Ion Exchange Synthesis of Zinc Aluminate. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2022;11(1):80-86. (In Russ.) https://doi.org/10.56304/S2304487X22010084