ANALYTICAL AND NUMERICAL MODELLING OF SOLITARY WAVES DE-SCRIBED BY THE GENERALIZED KAUP–NEWELL EQUATION
https://doi.org/10.26583/vestnik.2023.254
Abstract
Pulse propagation in optical fiber described by the generalized Kaup–Newell equation with arbitrary refractive index is investigated. Using traveling wave variables the generalized Kaup–Newell equation is reduced to a system of nonlinear differential equations. Compatibility conditions for the system of equations are found. Exact solutions of the equation with fixed n = 1 expressed by an elliptic Weierstrass function and an elliptic sine are obtained. Using the generalized simplest equation method, exact solutions of the equation in the form of solitary waves are found for an arbitrary refractive index. Mathematical model with periodical boundary conditions is formulated. Using pseudo-spectral method the numerical solution on a regular grid is constructed. The program code of the numerical solution for the problem is verified by comparing the numerical solution with the analytical one in the form of solitary waves. The error dependence on a step of grid is studied taking into account the restrictions on the model parameters. Figures of analytical and numerical solutions were constructed and analyzed.
About the Authors
K. V. KanRussian Federation
N. A. Kudryashov
Russian Federation
References
1. Sulaiman T.A., Yusuf A., Yusuf B., and Baleanu D. Propagation of diverse ultrashort pulses in optical fiber to Triki-Biswas equation and its modulation instability analysis // Modern Physics Letters B, 2021. V. 35. № 33. P. 2150491.
2. Kudryashov N.A., Biswas A. Optical solitons of nonlinear Schr¨odinger’s equation with arbitrary dual-power law parameters // Optik, 2022. V. 252. P. 168497.
3. Triki H., Zhou Q., Biswas A., Liu W., Yıldırım Y., Alshehri H.M., and Belic M. R. Localized pulses in opti-cal fibers governed by perturbed Fokas–Lenells equa-tion // Physics Letters A, 2022. V. 421. P. 127782.
4. Kudryashov N.A. Mathematical model of propa-gation pulse in optical fiber with power nonlinearities // Optik, 2020. V. 212. P. 164750.
5. Kudryashov N.A. A generalized model for descrip-tion of propagation pulses in optical fiber // Optik, 2019. V. 189. P. 42–52.
6. Kudryashov N.A. Optical solitons of mathematical model with arbitrary refractive index // Optik, 2020, V. 224. P. 165391.
7. Kudryashov N.A. Model of propagation pulses in an optical fiber with a new law of refractive indices // Optik, 2021. V. 248. P. 168160.
8. Антонова Е.В., Кудряшов Н.А. Темные и свет-лые солитоны нелинейного уравнения Шредингера с насыщением // Вестник Национального исследова-тельского ядерного университета «МИФИ», 2023. Т. 11, № 1. С. 22–27.
9. Younas U., Sulaiman T.A., Ren J. Dynamics of op-tical pulses in dual-core optical fibers modelled by de-coupled nonlinear Schrodinger equation via GERF and NEDA techniques // Optical and Quantum Electronics, 2022. V. 54. № 11. P. 738.
10. Triki H., Biswas A. Dark solitons for a generalized nonlinear Schr¨odinger equation with parabolic law and dual-power law nonlinearities // Mathematical Methods in the Applied Sciences, 2011. V. 34. № 8. P. 958–962.
11. Biswas A., Triki H., Zhou Q., Moshokoa S.P., Ul-lah M. Z., and Belic M. Cubic–quartic optical solitons in Kerr and power law media // Optik, 2017. V. 144. P. 357–362.
12. Triki H., Biswas A. Sub pico-second chirped en-velope solitons and conservation laws in monomode optical fibers for a new derivative nonlinear Schr¨odinger’s model // Optik, 2018. V. 173. P. 235–241.
13. Gonzalez-Gaxiola O. Optical soliton solutions for Triki–Biswas equation by Kudryashov’s R function method // Optik, 2022. V. 249. P. 168230.
14. Zhou Q., Ekici M., Sonmezoglu A. Exact chirped singular soliton solutions of Triki- Biswas equation // Optik, 2019. V. 181. P. 338–342.
15. Kudryashov N.A. Explicit formulas for general solutions of two nonlinear ordinary differential equa-tions via Jacobi elliptic sine // AIP Conference Proceed-ings / AIP Publishing LLC, 2022. V. 2425. P. 340010.
16. Kudryashov N.A., Antonova E.V. Solitary waves of equation for propagation pulse with power nonlineari-ties // Optik, 2020. V. 217. P. 164881.
Review
For citations:
Kan K.V., Kudryashov N.A. ANALYTICAL AND NUMERICAL MODELLING OF SOLITARY WAVES DE-SCRIBED BY THE GENERALIZED KAUP–NEWELL EQUATION. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2023;12(2):83-89. (In Russ.) https://doi.org/10.26583/vestnik.2023.254