Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

INVESTIGATION OF MAGNETIC PROPERTIES OF STRONTIUM HEXAGONAL FERRITE NANOPARTICLES

https://doi.org/10.26583/vestnik.2023.261

Abstract

Strontium hexaferrite with the formula SrFe12O19 was obtained due to citrate method. A feature of the synthesis is a relatively low production temperature – 700 °С. The X-ray diffraction study revealed the single-phase state of the obtained material due to the complete correspondence of the positions of the diffraction maxima on the experimental XRD pattern with the positions on the reference XRD pattern of strontium hexaferrite from the ICDD data base. An image of the sample obtained with a SEM method at a magnification of 50000 indicates the nanodispersed state of strontium hexaferrite particles. The method of DSC revealed the Curie point located at 450.9 °С. An analysis of the hysteresis loops obtained at 300 and 50 K indicates the obtained magnetically hard material in a single-domain state and the growth of magnetic parameters in conditions of low temperatures, which slows down upon cooling to 100 K. The studies were carried out using a Rigaku Ultima IV diffractometer with CuKα radiation and a scanning speed of 2°/min, a JEOL JSM-7001F electron microscope with an EDS Oxford INCA X-max 80 energy-dispersive spectrometer, a Netzsch STA449C F1 «Jupiter» thermal analyzer upon heating to 600 °C with a speed of 10 °С/min in air atmosphere, Quantum Design PPMS VersaLab vibrating magnetometer at a temperature of 300 and 50 K with an applied magnetic field of up to 3 T.

About the Authors

A. I. Kovalev
Челябинский государственный университет
Russian Federation


E. A. Belaya
Челябинский государственный университет
Russian Federation


D. A. Vinnik
Южноуральский государственный университет (национальный исследовательский университет)
Russian Federation


D. A. Zherebtsov
Южноуральский государственный университет (национальный исследовательский университет)
Russian Federation


A. M. Kolmogortsev
Национальный исследовательский ядерный университет «МИФИ»
Russian Federation


References

1. Pullar R.C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 2012. Vol. 57. No. 7, Pp. 1191–1334.

2. Verma S. et al. Understanding the phase evolution with temperature in pure (BaFe12O19) and zinc-zirconium co-doped barium hexaferrite (BaZnZrFe10O19) samples using Pawley and Rietveld analysis. Mater. Today Commun. 2021. Vol. 27. Pp. 102291.

3. Chakradhary V.K., Akhtar M.J. Highly coercive strontium hexaferrite nanodisks for microwave absorption and other industrial applications. Compos. Part B Eng. 2020. Vol. 183. Pp. 107667.

4. Goel S. et al. Studies on dielectric and magnetic properties of barium hexaferrite and bio-waste derived activated carbon composites for X-band microwave absorption. J. Alloys Compd. 2021. Vol. 875. Pp. 160028.

5. Kumar A. et al. Lattice strain mediated structural and magnetic properties enhancement of strontium hexaferrite nanomaterials through controlled annealing. Phys. B Condens. Matter. 2021. Vol. 600. Pp. 412592.

6. Gunanto Y.E. et al. Composite Paint based on Barium-Strontium-Hexaferrite as an Absorber of Microwaves at X-band Frequency. Mater. Today Proc. 2019. Vol. 13. Pp. 1–4.

7. Alna’washi G.A. et al. Investigation on X-ray photoelectron spectroscopy, structural and low tempe-rature magnetic properties of Ni-Ti co-substituted M-type strontium hexaferrites prepared by ball milling technique. Results Phys. 2021. Vol. 28. Pp. 104574.

8. Danewalia S.S., Singh K. Bioactive glasses and glass–ceramics for hyperthermia treatment of cancer: state-of-art, challenges, and future perspectives. Mater. Today Bio. 2021. Vol. 10. Pp. 100100.

9. Tkachenko M.V. et al. Polyfunctional bioceramics based on calcium phosphate and M-type hexagonal ferrite for medical applications. Tech. Phys. Lett. 2014. Vol. 40. No. 1. P. 4–6.

10. Tkachenko M.V., Ol’khovik L.P., Kamzin A.S. Polyfunctional bioceramics modified by M-type hexagonal ferrite particles for medical applications. Tech. Phys. Lett. 2011. Vol. 37. No. 6. Pp. 494–496.

11. Zhuravlev V.A. et al. Influence of the reagent types on the characteristics of barium hexaferrites prepared by mechanochemical method. Mater. Today Commun. 2019. Vol. 21. Pp. 100614.

12. Atif M. et al. Impact of strontium substitution on the structural, magnetic, dielectric and ferroelectric properties of Ba1-xSrxFe11Cr1O19 (x = 0.0–0.8) hexaferrites. J. Magn. Magn. Mater. 2020. Vol. 500. Pp. 166414.

13. Soria G.D. et al. Strontium hexaferrite platelets: a comprehensive soft X-ray absorption and Mössbauer spectroscopy study. Sci. Rep. 2019. Vol. 9. No. 1. Pp. 11777.

14. Huang K. et al. Structural and magnetic pro-perties of Gd–Zn substituted M-type Ba–Sr hexaferrites by sol-gel auto-combustion method. J. Alloys Compd. 2019. Vol. 803. Pp. 971–980.


Review

For citations:


Kovalev A.I., Belaya E.A., Vinnik D.A., Zherebtsov D.A., Kolmogortsev A.M. INVESTIGATION OF MAGNETIC PROPERTIES OF STRONTIUM HEXAGONAL FERRITE NANOPARTICLES. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2023;12(2):114-119. (In Russ.) https://doi.org/10.26583/vestnik.2023.261

Views: 215


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)