Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

INSTALLATION FOR TESTING SILICON PHOTOMULTIPLIER AND SCINTILLATION CRYSTALS

https://doi.org/10.26583/vestnik.2023.268

Abstract

The paper presents an installation for studying a number of parameters of assemblies based on silicon photomultipliers and scintillation crystals, such as noise characteristics, gain and temperature stability of SiPM. The installation also allows you to shoot single-electron spectra, study energy and time resolution, light output, as well as temperature stability of various scintillators. A block diagram of the installation is given and the principle of its operation is described. The necessary macros for mathematical packages have been developed, as well as software for collecting, processing and storing data from a temperature sensor in the form of an MFC application on Windows OS. The results of testing the operating parameters of the installation, confirming its functionality, are presented, comments and shortcomings requiring corrections and improvements are identified. With the help of the installation, studies were carried out on the study of temperature dependences, the dependences of energy resolutions on the scintillation crystal and on the silicon photomultiplier, and a single-electron spectrum was obtained for further study and measurement of the relative light output for various scintillators based on the reference.

About the Authors

A. D. Konotop
National Research Nuclear University «MEPhI»; National Research Center «Kurchatov Institute»
Russian Federation


N. S. Boyko
National Research Nuclear University «MEPhI»; National Research Center «Kurchatov Institute»
Russian Federation


References

1. Ghezzi A. Precision Timing with LYSO: Ce Crystals and SiPM Sensors in the CMS MTD Barrel Timing Lay-er. 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), IEEE. 2021. Pp. 1–4.

2. Ozaki K., Kazama S., Yamashita M., Itow Y., Moriyama S. Characterization of new silicon photomul-tipliers with low dark noise at low temperature . Journal of Instrumentation, 2021. V. 16. No. 3. P. 03014.

3. Chung C., Backes T., Dittmar C., Karpinski W., Kirn T. and etc. The Development of SiPM-based fast time-of-flight detector for the AMS-100 experiment in space . Instruments, 2022. V. 6. No. 1. P. 14.

4. Ozaki K., Kazama S., Yamashita M, Itow Y., Mori-yama S. Characterization of new photo-detectors for the future dark matter experiments with liquid xenon. Jour-nal of Physics: Conference Series. 2020. V. 1468. P. 012238. doi:10.1088/1742-6596/1468/1/012238.

5. Salvador B., Pineda D.A. E., Fernandez-Maza L., Corral A. Monitoring of microfluidics systems for PET radiopharmaceutical synthesis using integrated silicon photomultipliers. IEEE Sensors Journal, 2019. V. 19. No. 17. Pp. 7702–7707.

6. Ravil Agishev and etc. Lidar with SiPM: Some ca-pabilities and limitations in real environment. Optics & Laser Technology, 2013. No. 49. Pp. 86–90.

7. Poleshchuk R. Razrabotka fotonnyh metodov dlya eksperimental'nogo kompleksa Centra podzemnoĭ fiziki CUPP. [Development of photonic methods for the experimental complex of the Underground Physics Cen-ter CUPP]. Moscow, FGBUN IYI RAN Publ., 2015.

8. Poleshchuk O. and etc. Performance tests of a LaBr3:Ce detector coupled to a SiPM array and the GET electronics for γ-ray spectroscopy in a strong mag-netic field. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detec-tors and Associated Equipment, 2021. V. 987.

9. Bonanno G., Marano D., Belluso M., Billota S. and etc. Characterization Measurements Methodology and Instrumental Set-Up Optimization for New SiPM Detectors. Part I: Electrical Tests. IEEE Sensors Journal, 2014.

10. Bonanno G., Marano D., Belluso M., Billota S. and etc. Characterization Measurements Methodology and Instrumental Set-Up Optimization for New SiPM Detectors. Part II: Optical Tests . IEEE Sensors Journal, 2014. V. 14. No. 10. Pp. 3567–3578.

11. Korneev A. Universal'naya model' svetovyhoda plastmassovyh i zhidkih organicheskih scintillyatorov dlya elektronov i tyazhyolyh zaryazhennyh chastic [Universal model of light output of plastic and liquid organic scintillators for electrons and heavy charged particles]. Available at: https://nauchkor.ru/uploads/ documents/569832da5f1be74d9300005b.pdf (ac-cessed 10.08.2023).

12. Akimov YU. Fotonnye metody registracii izlu-chenij [Photonic methods of radiation registration]. OIYAI, Dubna. 2014.

13. Guide SP5600AN Educational Kit – Premium Version Guide. CAEN Educational, Italy, 2016.

14. Arduino nano Datasheet, Arduino Inc. Available at: https://docs.arduino.cc/hardware/nano (accessed 10.08.2023).

15. Temperature and humidity module AM2302 Product Manual, Aosong (Guangzhou) Electronics Co. Ltd., Guangzhou, China (2015). Available at: https://aosong.com/en/ (accessed 10.08.2023).

16. Konotop A. Harakteristiki 32-kanal'nogo maketa PET na osnove scintillyatora GAGG v sochetanii s SiPM [Characteristics of a 32-channel PET layout based on a GAG scintillator in combination with SiPM]. Available at: https://indico.particle.mephi.ru/event/311/ contribu-tions/3497 (accessed 10.08.2023).


Supplementary files

Review

For citations:


Konotop A.D., Boyko N.S. INSTALLATION FOR TESTING SILICON PHOTOMULTIPLIER AND SCINTILLATION CRYSTALS. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2023;12(3):143-152. (In Russ.) https://doi.org/10.26583/vestnik.2023.268

Views: 862


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)