NUMERICAL SIMULATION OF TRANSONIC SUPER-ALFVENIC MHD FLOWS WITH ACCELERATION IN NARROW COAXIAL CHANNELS IN THE PRESENCE OF A LONGITUDINAL MAGNETIC FIELD
https://doi.org/10.26583/vestnik.2023.270
Abstract
The article is devoted to numerical studies of dense hot plasma flows in coaxial channels of plasma accelerators. Plasma is considered as a continuous electrically conducting medium, the behavior of which is described in terms of magnetic hydro dynamics (MHD). The work uses a mathematical model with nonstationary equations of “ideal” single-fluid magnetic hydro dynamics, obtained in a quasi-one-dimensional approximation. The purpose of the work is to study the influence of the geometry of the accelerator channel in the form of a nozzle and the external longitudinal magnetic field on the parameters of steady-state transonic super-Alfvénic acceleration MHD flows, which are of the greatest applied interest in the development of plasma engines. It has been demonstrated that a longitudinal magnetic field causes rotation of the flow and slightly reduces the acceleration characteristics of the channel. It has been established that the location of the “waist”, where the minimum cross-section of the channel is achieved, has practically no effect on the input and output flow values, but significantly affects the flow parameters inside the channel area. It is shown that the channel geometry affects the value of the critical longitudinal magnetic field corresponding to the boundary of the super-Alfvénic flow regime.
About the Authors
T. R. KalimullinRussian Federation
E. V. Styopin
Russian Federation
References
1. Morozov A.I., Esipchuk Yu.V., Tilinin G.N., Trofimov A.V., Sharov Yu.A., Shchepkin G.Ya. Eksperimental'noe issledovanie plazmennogo uskoritelya s zamknutym drejfom elektronov i protyazhennoj zonoj uskoreniya. [Experimental study of a plasma accelerator with closed electron drift and an extended acceleration zone]. ZhTF, 1972. Vol. 42, is. 1. Pp. 54–63 (in Russian).
2. Morozov A.I. Fizicheskie osnovy kosmicheskih elektroreaktivnyh dvigatelej [Physical foundations of space electric propulsion engines]. Moscow, Atomizdat Publ., 1978. 328 p. (in Russian).
3. Volkov Ya.F., Kulik N.V., Marinin V.V., Moro-zov A.I., Solyakov D.G., Staltsov V.V., Tereshin V.I., Tiarov M.A., Tsupko B. .Yu., Chebotarev V.V. Analiz parametrov potokov plazmy, generiruemyh polnoblochnym KSPU H-50. [Analysis of parameters of plasma flows generated by full-block KSPU X-50]. Phys. plasma, 1992. Vol. 18. Pp. 1392 (in Russian).
4. Morozov A.I. Vvedenie v plazmodinamiku [Introduction to plasmodynamics]. Moscow, Fizmatlit Publ., 2008. 616 p. (in Russian).
5. Morozov A.I. Principy koaksial'nyh stacionarnyh plazmennyh uskoritelej (KSPU) [Principles of coaxial stationary plasma accelerators (CSPA)]. Phys. plasma, 1990. Vol. 16, is. 2. Pp. 131–146 (in Russian).
6. Kulikov A.G., Lyubimov G.A. Magnitnaya gidrodinamika. [Magnetic hydrodynamics]. Moscow, Logos Publ., 2005. 328 p. (in Russian).
7. Klimov N.S., Gutorov K.M., Kovalenko D.V., Kozlov A.N., Konovalov V.S., Podkovyrov V.L., Yaroshevskaya A.D. Spektry izlucheniya v potokah ionizuyushchihsya gazov dlya ustanovki KSPU-T s prodol'nym polem. [Radiation spectra in flows of ionizing gases for the KSPU-T installation with a longitudinal field]. Preprints of the Institute for Problems of Mathematics named after. M.V. Keldysh, 2022. No. 12. 32 p. (in Russian).
8. Brushlinsky K.V., Zhdanova N.S. Stacionarnye MGD-techeniya v soplah s vneshnim prodol'nym magnitnym polem. [Stationary MHD flows in nozzles with an external longitudinal magnetic field]. Izv. AN. Mechanics of liquid and gas, 2004. No. 3. Pp. 135–146 (in Russian).
9. Styopin E.V. Numerical simulation of near-Alfven MHD flows relaxation with a longitudinal magnetic field. J. Plasma Physics, 2015. Vol. 81. 905810309.
10. Brushlinskiy K.V. Matematicheskiye osnovy vychislitel'noy mekhaniki zhidkosti, gaza i plazmy. [Mathematical foundations of computational mechanics of liquid, gas and plasma]. Dolgoprudnyy, Intellekt Publ., 2017. 268 p. (in Russian).
11. Styopin E.V. Stacionarnye MGD-techeniya v koaksial'nyh kanalah krivolinejnoj konfiguracii . [Stationary MHD flows in coaxial channels of a curvilinear configuration]. Vestnik NIYaU MIFI, 2015. Vol. 4. No. 5. Pp. 407–420. (in Russian).
12. Brushlinsky K.V., Zhdanova N.S., Stepin E.V. Uskorenie plazmy v koaksial'nyh kanalah s profilirovannymi elektrodami i prodol'nym magnitnym polem. [Plasma acceleration in coaxial channels with profiled electrodes and a longitudinal magnetic field]. ZhVMiMF, 2018. Vol. 58. No. 4. Pp. 607–617 (in Russian).
13. Brushlinsky K.V., Styopin E.V. Chislennaya model' kompressionnyh techenij plazmy v kanalah v prisutstvii prodol'nogo magnitnogo polya. [Numerical model of compression plasma flows in channels in the presence of a longitudinal magnetic field]. Differential equations, 2019. Vol. 55. No. 7. Pp. 929–939 (in Russian).
14. Boris J.P. and Book D.L. SHASTA, a fluid transport algorithm that works. Journal of Computational Physics, 1973. Vol. 11. Pp. 38–69.
15. Oran E. Chislennoe modelirovanie reagiruyushchih potokov. [Numerical modeling of reacting flows]. Moscow, Mir Publ., 1990. 660 p. (in Russian).
16. Kovaleva A.S., Kalimullin T.R., Styopin E.V. Matematicheskoe modelirovanie stacionarnyh MGD-techenij v uzkih kanalah plazmennyh uskoritelej. [Mathematical modeling of stationary MHD flows in narrow channels of plasma accelerators]. IX International Conference «Laser, Plasma Research and Technologies», LaPlaz-2023; Collection of scientific papers. Moscow, Russia: National Research Nuclear University MEPhI, 2023. P. 145 (in Russian).
Review
For citations:
Kalimullin T.R., Styopin E.V. NUMERICAL SIMULATION OF TRANSONIC SUPER-ALFVENIC MHD FLOWS WITH ACCELERATION IN NARROW COAXIAL CHANNELS IN THE PRESENCE OF A LONGITUDINAL MAGNETIC FIELD. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2023;12(4):233-242. (In Russ.) https://doi.org/10.26583/vestnik.2023.270