DEVELOPMENT OF AN APPROACH FOR DRYING HUMAN EXHAUST AIR SAMPLES
https://doi.org/10.26583/vestnik.2023.271
Abstract
Currently, 6 % of the total population of the planet has both types of diabetes mellitus, and 4% have bronchial asthma. It is predicted that the number of people with these diseases will increase every year. A large percentage of all those suffering from the above diseases are children. An urgent task is to develop a non-invasive method for diagnosing type 1 and type 2 diabetes, asthma and other diseases. An approach has been developed for preparing samples of human exhaled air for their subsequent analysis using a method based on infrared laser spectroscopy. The method used is described in detail in this work. Using an installation based on an infrared quantum cascade laser, the transmission spectra of human exhaled air are analyzed. From the obtained spectra, it is possible to calculate the concentrations of biomarker substances, deviations from the norm are associated with the development of certain diseases or pathologies in the patient. In this work, an analysis of existing types of air dehumidifiers was carried out, for example: capillary column, cryotrap, adsorption dehumidifiers, etc. A Nafion dehumidifier was chosen as the most optimal solution for use in an experimental setup with an infrared quantum cascade laser. Based on the results of studies of the spectra of exhaled air from patients with previously known diagnoses, a method for drying a sample of human exhaled air was developed and described, and the absolute humidity of the dried exhaled air sample was calculated
About the Authors
I. A. KarpovRussian Federation
I. L. Fufurin
Russian Federation
O. A. Nebritova
Russian Federation
P. P. Demkin
Russian Federation
D. R. Anfimov
Russian Federation
References
1. Fufurin I., Berezhanskiy P., Golyak I., Anfi¬mov D., Kareva E., Scherbakova A. Morozov A. Deep Learning for Type 1 diabetes mellitus diagnosis using infrared quantum cascade laser spectroscopy. Materials, 2022. Vol. 15. No. 9. Pp. 2984. DOI: https://doi.org/ 10.3390/ ma15092984.
2. Tabalina A. S., Anfimov D. R., Fufurin I. L., Golyak I. S. Infrared quantum cascade laser spectroscopy as non-invasive diagnostic tests for human diseases. Biomedical Spectroscopy, Microscopy and Imaging, 2020. Vol. 11359. Pp. 233–242. DOI: https://doi.org/10.1117/ 12.2555042.
3. Das S., Pal S., Mitra M. Significance of exhaled breath test in clinical diagnosis: a special focus on the detection of diabetes mellitus. Journal of medical and biological engineering, 2016. Vol. 36. Pp. 605–624. DOI: https://doi.org/10.1007/s40846-016-0164-6.
4. Kharitonov S.A., Barnes P.J. Exhaled biomar-kers. Chest, 2006. Vol. 130. No. 5. Pp. 1541–1546. DOI: https://doi.org/10.1378/chest.130.5.1541.
5. Righettoni M., Tricoli A., Pratsinis S.E. Si: WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Analytical chemistry, 2010. Vol .82. No. 9. Pp. 3581–3587. DOI: https://doi.org/10.1021/ac902695n.
6. Golyak I.S., Berezhansky P.V., Sedova A.Yu., Gutyrchik T.A., Nebritova O.A., Morozov A.N., Anfi-mov D.R., Vintaykin I.B., Konopleva A.A., Demkin P.P., Fufurin I.L. Primenenie mashinnogo obucheniya dlya diagnostiki nekotoryh social'no znachimyh zabolevanij po vydyhaemomu chelovekom vozduhu metodom infrakrasnoj lazernoj spektroskopii. [Application of machine learning for the diagnosis of some socially significant diseases using the air exhaled by a person using infrared laser spectroscopy]. Optics and Spectroscopy, 2023. Vol. 131. No. 6. Pp. 825–831. DOI: https:// doi.org/10.21883/OS.2023.06.55917.109-23 (in Russian).
7. Anfimov D.R., Fufurin I.L., Golyak I.S., Morozov A.N. Design of an analyzer based on a quantum cascade laser for substance identification by infrared reflected radiation. Integrated Optics: Design, Devices, Systems and Applications VI, 2021. Vol. 11775. Pp. 115–122. SPIE. DOI: https://doi.org/10.1117/12. 2589238.
8. Davies S., Spanel P., Smith D. Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney international, 1997. Vol. 52(1). Pp. 223–228. DOI: https://doi.org/10.1038/ki.1997.324.
9. Chu P.M., Guenther F.R., Rhoderick G.C., Lafferty W.J. The NIST quantitative infrared database. Journal of research of the National Institute of Standards and Technology, 1999. Vol. 104. No. 1. Pp. 59–81. DOI: https://doi.org/10.6028/jres.104.004.
10. Shcherbakova A.V., Anfimov D.R., Fufurin I.L., Golyak I.S., Trapeznikova I.A., Kareva E.R., Morozov A.N. Experimental Setup Based on a Quantum Cascade Laser Tunable in the Wavelength Range of 5.3–12.8 µm for Spectral Analysis of Human Exhaled Air. Optics and Spectroscopy, 2021. Vol. 129. iss.7. Pp. 830–837. DOI: https://doi.org/10.1134/S0030400X21060151.
11. Mikhailova S.M., Sharifullina L.R. Ocenka zagryazneniya vozduha vysokotoksichnymi soedineniyami v zone tekhnogennyh chrezvychajnyh situacij, svyazannyh s vozgoraniem sinteticheskih materialov. [Assessment of air pollution by highly toxic compounds in the zone of man-made emergency situations associated with the fire of synthetic materials]. Scientific and educational problems of civil protection, 2020. Vol. 2. No. 45. Pp. 47–55 (in Russian).
12. Soyak L. Razdelenie i identifikaciya izomernyh uglevodorodov metodami kapillyarnoj gazovoj hromatografii i sochetaniyami ee s mass-spektrometriej i IK-Fur'e-spektroskopiej [Separation and identification of isomeric hydrocarbons by methods of capillary gas chromatography and its combinations with mass spectrometry and IR-Fourier spectroscopy]. Russian Chemical Journal, 2003. Vol. 47. No. 2. Pp. 51–69 (in Russian).
13. Sherstov I.V., Pustovalova R.V., Zenov K.G. Sistema sbora i podgotovki prob vydyhaemogo vozduha dlya medicinskogo lazernogo optiko-akusticheskogo gazoanalizatora. [System for collecting and preparing exhaled air samples for a medical laser optical-acoustic gas analyzer]. Atmosphere and Ocean Optics, 2017. Vol. 30. No. 5. Pp. 435–441. DOI: https://doi.org/ 10.15372/AOO20170513 (in Russian).
14. Pleil J.D., Oliver K.D., McClenny W.A. Enhan¬ced performance of Nafion dryers in removing water from air samples prior to gas chromatographic analysis. Japca, 1987. Vol. 37. No. 3. Pp. 244–248. DOI: https://doi.org/10.1080/08940630.1987.10466219.
15. 15 Welp L.R., Keeling R.F., Weiss R.F., Paplaw-sky W., Heckman S. Design and performance of a Nafion dryer for continuous operation at CO2 and CH4 air monitoring sites. Atmospheric Measurement Techni-ques, 2013. Vol. 6. No. 5. Pp. 1217–1226. DOI: https://doi.org/ 10.5194/amt-6-1217-2013.
16. Ye X., LeVan M. D. Water transport properties of Nafion membranes: Part I. Single-tube membrane module for air drying // Journal of Membrane Science, 2003. Vol. 221, iss. 1–2. Pp. 147–161. DOI: https:// doi.org/10.1016/S0376-7388(03)00255-2.
17. Maltsev A.A. Molekulyarnaya spektroskopiya. [Molecular spectroscopy]. Moscow, Moscow University Publishing House, 1980. 272 p.
Supplementary files
Review
For citations:
Karpov I.A., Fufurin I.L., Nebritova O.A., Demkin P.P., Anfimov D.R. DEVELOPMENT OF AN APPROACH FOR DRYING HUMAN EXHAUST AIR SAMPLES. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2023;12(4):193-200. (In Russ.) https://doi.org/10.26583/vestnik.2023.271