THE POSSIBILITY INVESTIGATION OF THE MEDICAL ELECTRON BEAM SHAPING USING DEVICES MADE FROM PLASTICS WITH METAL IMPURITIES
https://doi.org/10.26583/vestnik.2023.278
Abstract
In modern practice, collimators are employed in electron beam therapy to shape the radiation field into standard configurations. However, tumors often exhibit complex shapes, necessitating collimators with individually created collimation windows, typically made of metal alloys. The production of such devices is time-consuming, limiting their widespread use. A promising approach to collimator manufacturing lies in three-dimensional printing, using a fused filament fabrication that makes it possible to produce three-dimensional objects quick and accurate. Presently, the polymer materials used allow for 3D printing products with a density of up to 1.3 g/cm³, which leads the necessity to manufacture a collimator of relatively large thickness. This study proposes the utilization of plastics infused with metal impurities for 3D printing collimators created for the electron beam therapy. Numerical simulations were conducted using the Monte Carlo method to calculate the requisite collimator thickness for effective absorption of electron beams therapeutic energies range. Consequently, a modular collimator was designed and 3D printed, offering the flexibility to vary the diameter of the collimation window from 0.5 to 6 cm. Based on the experimental data obtained for the medical electron beam with an energy of 6 MeV, it was defined that the 3D printed device can effectively shaped a radiation field corresponding to the choosing diameter of the collimation window. It is important to consider the features of electron beam field shaping using a plastic collimator during the electron beam treatment planning.
About the Authors
E. A. BushminaRussian Federation
A. A. Bulavskaya
Russian Federation
A. A. Grigorieva
Russian Federation
I. A. Miloichikova
Russian Federation
V. O. Saburov
Russian Federation
S. G. Stuchebrov
Russian Federation
References
1. Hendee W.R., Ibbott G.S., Hendee E.G. Radiation therapy physics. John Wiley & Sons, 2013. 360 p.
2. Hoskin P. External Beam Therapy. Oxford University Press, 2019. 560 p.
3. Calvo F.A., Serrano J., Cambeiro M., Aristu J., Asencio J.M., Rubio I., Delgado J.M., Ferrer C., Desco M., Pascau J. Intra-Operative Electron Radiation Therapy: An Update of the Evidence Collected in 40 Years to Search for Models for Electron-FLASH Studies. Cancers, 2022. Vol. 14. No. 15. Pp. 3693 https://doi.org/ 10.3390/cancers14153693
4. Vyas V., Palmer L., Mudge R., Jiang R., Fleck A., Schaly B., Osei E., Charland P. On bolus for megavoltage photon and electron radiation therapy. Medical Dosimetry, 2013. Vol. 38. No. 3. Pp. 268–273 https://doi.org/10.1016/j.meddos.2013.02.007
5. Chow J.C.L., Grigorov G.N. Peripheral dose outside applicators in electron beams. Physics in Medicine & Biology, 2006. Vol. 51. No. 12. Pp. N231 https://doi.org/10.1088/0031-9155/51/12/N01
6. Inyang S.O., Chamberlain A.C. Design and optimization of dual electron multileaf collimator. Physica Medica: European Journal of Medical Physics, 2015. Vol. 31. Pp. S5 https://doi.org/10.1016/j.ejmp.2015. 07.103
7. Eldib A, Jin L, Li J, Ma C-M. C. Feasibility of replacing patient specific cutouts with a computer-controlled electron multileaf collimator. Physics in Medicine & Biology, 2013. Vol. 58. No. 16. Pp. 5653 https://doi.org/10.1088/0031-9155/58/16/5653
8. Vatanen T., Traneus E., Lahtinen T. Comparison of conventional inserts and an add-on electron MLC for chest wall irradiation of left-sided breast cancer. Acta Oncologica, 2009. Vol. 48. No. 3. Pp. 446–451 https://doi.org/10.1080/02841860802477907
9. Kawai Y., Tamura M., Amano M., Kamomae T., Monzen H. Dosimetric characterization of a novel surface collimator with tungsten functional paper for electron therapy. Anticancer Research, 2019. Vol. 39. No. 6. Pp. 2839–2843 https://doi.org/10.21873/anticanres. 13412
10. Schulz J.B., Gibson C., Dubrowski P., Mar-quez C.M., Million L., Qian Y., Skinner L., Yu A.S. Shaping success: clinical implementation of a 3D-printed electron cutout program in external beam radiation therapy. Frontiers in Oncology, 2023. Vol. 13. P. 1237037. https://doi.org/10.3389/fonc.2023.1237037
11. Miloichikova I., Bulavskaya A., Cherepennikov Y., Gavrikov B., Gargioni E., Belousov D., Stuchebrov S. Feasibility of clinical electron beam formation using polymer materials produced by fused deposition modeling. Physica Medica, 2019. Vol. 64. Pp. 188–194. https://doi.org/10.1016/j.ejmp.2019.07.014
12. Skinner L., Fahimian B.P., Yu A.S. Tungsten filled 3D printed field shaping devices for electron beam radiation therapy. PLoS One, 2019. Vol. 14. No. 6. P. e0217757. https://doi.org/10.1371/journal.pone. 0217757
13. Gibson I., Rosen D., Stucker B., Khorasani M. Additive manufacturing technologies. Cham, Switzerland: Springer, 2021. 685 p.
14. Bushmina E.A., Bulavskaya A.A., Grigor’e-va A.A., Miloichikova I. A., Stuchebrov S. G. The Influence of the Fill and Extrusion Factors in 3D Printing on the Electron and X-Ray Densities of Plastic Products. Biomedical Engineering, 2022. Vol. 56. No. 4. Pp. 278–281. https://doi.org/10.1007/s10527-022-10219-x
15. Farbman D., McCoy C. Materials testing of 3D printed ABS and PLA samples to guide mechanical design. International Manufacturing Science and Engineering Conference. – American Society of Mechanical Engineers, 2016. Vol. 49903. P. V002T01A015. https://doi.org/10.1115/MSEC2016-8668
16. Crawford R.J., Martin P.J. Plastics engineering. Butterworth-Heinemann, 2020. 622 p.
17. Laureto J., Tomasi J., King J.A., Pearce J.M. Thermal properties of 3-D printed polylactic acid-metal composites. Progress in Additive Manufacturing, 2017. Vol. 2. Pp. 57–71. https://doi.org/10.1007/s40964-017-0019-x
18. Gao X., Qi S., Kuang X., Su Y., Li J., Wang D. Fused filament fabrication of polymer materials: A review of interlayer bond. Additive Manufacturing, 2021. Vol. 37. P. 101658. https://doi.org/10.1016/j.addma. 2020.101658
19. BFCopper Bestfilament dlya 3D-printerov 0,5 kg (1,75 mm) [BFCopper Bestfilament for 3D printers 0.5 kg (1.75 mm)]. Available at: https:// bestfilament.ru/ bfcopper/ (accessed 01.10.2023).
20. Sorokina A.A., Bulavskaya A.A., Grigor'e¬va A.A., Milojchikova I.A. Metody chislennogo modelirovaniya dlya ocenki vozmozhnosti primeneniya bolyusov dlya gamma-terapii, izgotovlennyh s pomoshch'yu trekhmernoj pechati [Numerical modeling methods for assessing the possibility of using boluses for gamma therapy manufactured using three-dimensional printing].
21. Tezisy XXIII Vseros. konf. mol. uch. po matematicheskomu modelirovaniyu i informacionnym tekhno¬logiyam: Tezisy dokladov, Novosibirsk, 24–28 oktyabrya 2022 g. [Abstracts of the XXIII All-Rus. Conf. of Young scient. in mathematical modeling and information technology: Abstracts, Novosibirsk, October 24–28, 2022.]. Novosibirsk: FSBSI «FRC ICT», 2022. P. 35 (in Russian).
22. Alhamada H., Simon S., Gulyban A., Gastelb-lum P., Pauly N., VanGestel D., Reynaert N. Monte Carlo as quality control tool of stereotactic body radiation therapy treatment plans. Physica Medica, 2021. Vol. 84. Pp. 205–213. https://doi.org/10.1016/j.ejmp.2021. 02.025
23. Original Prusa i3 MK3S+ 3D-printer. Available at: https://www.prusa3d.com/category/original-prusa-i3-mk3s/ (accessed: 01.10.2023).
24. Geant4. Available at: https://geant4.web.cern.ch/ (accessed: 01.10.2023).
25. NOVAC 11: mobile IOeRT accelerator. Available at: https://www.soiort.com/novac-11/ (accessed: 01.10.2023).
26. EBT3 Dosimetry Film. Available at: http:// www.gafchromic.com/documents/EBT3_Specifications.pdf (accessed: 01.10.2023).
27. Phantoms for Absolute Dosimetry. Available at: https://www.iba-dosimetry.com/fileadmin/user_upload/ rt-br-e-phantoms-for-ad_rev2_0813.pdf (accessed: 01.10.2023).
28. Epson Perfection V850 Pro. Available at: https:// epson.com/Support/Scanners/Perfection-Series/ Epson-Perfection-V850-Pro/s/SPT_B11B224201 (acces¬sed: 01.10.2023).
29. Lewis D., Micke A., Yu X., Chan M. F. An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Medical physics, 2012. Vol. 39. No. 10. Pp. 6339–6350. https://doi.org/10.1118/1.4754797
30. Stuchebrov S.G., Bulavskaya A.A., Cherepennikov Yu.M., Gargioni E., Grigorieva A.A., Miloichikova I.A. Influence of 3D-printed collimator thickness on near-the-edge scattering of high-energy electrons. Journal of Instrumentation, 2020. Vol. 15. No. 04. P. C04023. https://doi.org/10.1088/1748-0221/ 15/04/C04023
Review
For citations:
Bushmina E.A., Bulavskaya A.A., Grigorieva A.A., Miloichikova I.A., Saburov V.O., Stuchebrov S.G. THE POSSIBILITY INVESTIGATION OF THE MEDICAL ELECTRON BEAM SHAPING USING DEVICES MADE FROM PLASTICS WITH METAL IMPURITIES. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2023;12(6):313-320. (In Russ.) https://doi.org/10.26583/vestnik.2023.278