Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

SOLUTIONS OF LINEAR INITIAL-BOUNDARY VALUE PROBLEMS OF REACTION-DIFFUSION TYPE WITH DELAY

https://doi.org/10.26583/vestnik.2023.286

Abstract

Linear one-dimensional equations of reaction-diffusion type with a constant delay are considered. Exact solutions of such equations are described, which are expressed in elementary functions. Closed-form solutions are obtained for the corresponding initial-boundary value problems with common initial data and boundary conditions of the first, second, and third kind, as well as mixed boundary conditions

About the Authors

A. D. Polyanin
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Russian Federation


V. G. Sorokin
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Russian Federation


References

1. Bellman R., Cooke K.L. Differencial'no-razno¬stnye uravneniya [Differential-difference equations]. Moscow, Mir Publ., 1967.

2. Myshkis A.D. Linejnye dfferencial'nye uravnenija s zapazdyvajushhim argumentom [Linear Differential Equations with Retarded Arguments]. Moscow, Nauka Publ., 1972.

3. Elsgolt's L.E., Norkin S.B. Vvedenie v teoriyu dif-ferencial'nyh uravnenij s otklonyayushchimsya argu-mentom [Introduction to the Theory and Application of Differential Equations With Deviating Arguments]. Moscow, Nauka Publ., 1971.

4. Glagolev M.V., Sabrekov A.F., Gonharov V.M. Differencial'nye uravnenija s zapazdyvaniem kak ma-tematiheskie modeli dinamiki populjacij [Delay differ-ential equations as a tool for mathematical modelling of population dynamic]. Dinamika okruzhajushhej sredy i global'nye izmenenija klimata, 2018. Vol. 9. No. 2. Pp. 40–63 (in Russian).

5. Kashchenko S.A. Issledovanie stacionarnykh rezhimov differencial'no-raznostnogo uravnenija dina-miki populjacii nasekomykh [Stationary states of a de-lay differential equation of insect population's dynam-ics]. Modelirovanie i analiz informacionnykh sistem, 2021. Vol. 19. No. 5. Pp. 18–34 (in Russian).

6. Kashchenko I.S., Kashchenko S.A. Dinamika uravnenija s dvumja zapazdyvanijami, modelirujush-hego chislennost' populjacii [Dynamics of equation with two delays modelling the number of population]. Izvestija vuzov. PND, 2019. Vol. 27. No. 2. Pp. 21–38 (in Russian).

7. Kolesov A.Yu., Rozov N.Kh. The theory of relaxa-tion oscillations for Hutchinson's equation. Sbornik: Mathematics, 2011. Vol. 202. No. 6. Pp. 829–858.

8. Perevarukha A.Yu. Scenarij nevynuzhdennoj destrukcii populjacii v modifikacii uravnenija Khatchinsona [Scenario of involuntary destruction of a population in a modified Hutchinson equation]. Vladi-kavkazskij matematicheskij zhurnal, 2017. Vol. 19. No. 4. Pp. 58–69 (in Russian).

9. Berezansky L., Braverman E., Idels L. Nicholson's blowflies differential equations revisited: Main results and open problems. Appl. Math. Modelling, 2010. Vol. 34. Pp. 1405–1417.

10. Kuang Y. Delay Differential Equations with Ap-plications in Population Dynamics. San Diego, Acade-mic Press, 2012.

11. Bocharov G.A., Marchuk G.I. Prikladnye prob-lemy matematicheskogo modelirovanija v immunologii [Applied problems of mathematical modeling in immu-nology]. Zhurnal vychislitel'noj matematiki i ma-tematicheskoj fiziki, 2000. Vol. 40. No. 12. Pp. 1905–1920 (in Russian).

12. Voropaeva O.F., Kozlova A.O., Senotrusova S.D. Chislennyj analiz perekhoda ot uravnenija s za-pazdyvaniem k sisteme ODU v matematicheskoj modeli seti onkomarkerov [Numerical analysis of the transition from the equation with retarded argument to the ODE system in a mathematical model of the tumor markers network. Vyhislitel'nye tekhnologii, 2016. Vol. 21. No. 2. Pp. 12–25 (in Russian).

13. Kubyshkin E.P., Moryakova A.R. Bifurkacii peri-odicheskikh reshenij uravnenija Mehkki – Glassa [Bi-furcation of Periodic Solutions of the Mackey Glass – Equation]. Modelirovanie i analiz informacionnykh sistem, 2016. Vol. 23. No. 6. Pp. 784–803 (in Russian).

14. Gourley S.A., Kuang Y., Nagy J.D. Dynamics of a delay differential equation model of hepatitis B virus infection. J. Biol. Dynam., 2008. Vol. 2. No. 2. Pp. 140–153.

15. Liu B. New results on the positive almost periodic solutions for a model of hematopoiesis. Nonlinear Anal. Real World Appl., 2014. Vol. 17. Pp. 252–264.

16. Schiesser W.E. Time Delay ODE/PDE Models: Applications in Biomedical Science and Engineering. Boca Raton, CRC Press, 2019.

17. Vinitsky S.I., Gusev A.A., Chuluunbaatar G., Derbov V.L., Krassovitskiy P.M., Pen'kov F.M. Reduced SIR model of COVID-19 pandemic. Comput. Math. Math. Phys., 2021. Vol. 61. No. 3. Pp. 376–387.

18. Pertsev N.V., Loginov K.K., Topchii V.A. Analysis of an epidemic mathematical model based on delay differential equations. J. Appl. Industr. Math., 2020. Vol. 14. No. 2. Pp. 396–406.

19. Guglielmi N., Iaсomini E., Viguerie A. Delay dif-ferential equations for the spatially resolved simulation of epidemics with specific application to COVID-19. Math. Meth. Appl. Sci., 2022. V. 45. № 8. P. 4752– 4771.

20. Kil'matov T.R. Vremennoj lag kak faktor poteri ustojсhivosti ehkonomiсheskoj sistemy [Time-Lag as a factor of loosing of the economiс system]. Ehkonomika i matematicheskie metody, 2013. Vol. 49. No. 3. Pp. 120–122 (in Russian).

21. Chen X., Liu H., Xu Ch. The new result on de-layed finance system. Nonlinear Dyn., 2014. Vol. 78. Pp. 1989–1998.

22. Zhang X., Zhu H. Hopf bifurcation and chaos of a delayed finance system. Complexity, 2019. Vol. 2019, 6715036.

23. Suarez M.J., Schopf P.S. A delayed action oscil-lator for ENSO. J. Atmos. Sci., 1988. Vol. 45. Pp. 3283–3287.

24. Kalmar-Nagy T., Stepan G., Moon F.C. Subсri-tiсal HOPF bifurcation in the delay equation model for machine tool vibrations. Nonlinear Dyn., 2001. Vol. 26. Pp. 121–142.

25. Kashchenko I.S., Kashchenko S.A. Local dynam-ics of the model of a semiconductor laser with delay. Theoret. Math. Phys., 2023. Vol. 215. No. 2. Pp. 658–666.

26. Kashchenko S.A., Mayorov V.V., Mayorova N.L. Analiz kolebatel'nykh processov v seti impul'snykh nejronov [Analysis of oscillating processes in a spiking neural network]. Vestnik NIYaU MIFI, 2018. Vol. 7. No. 2. Pp. 138–162 (in Russian).

27. Arik S. Global asymptotic stability of a clarger lass of neural networks with constant time delay. Phys. Lett. A, 2003. Vol. 311. Pp. 504–511.

28. Wu J., Campbell S.A., Belair J. Time-delayed neural networks: stability and oscillations. In: Encyclo-pedia of Computational Neuroscience. Pp. 2966–2972. New York, Springer, 2015.

29. Zhao H. Exponential stability and periodic oscil-latory of bidirectional associative memory neural net-work involving delays. Neurocomputing, 2006. Vol. 69. Pp. 424–448.

30. Polyanin A.D., Sorokin V.G. Reakcionno-diffu-zion¬nye uravnenija s zapazdyvaniem: Matematicheskie modeli i kachestvennye osobennosti [Reaction diffusion equations with delay: Mathematical models and quali-tative features]. Vestnik NIYaU MIFI, 2017. Vol. 6. No. 1. Pp. 41–55 (in Russian).

31. Wu J. Theory and Applications of Partial Func-tional Dfferential Equations. New York, Springer, 1996.

32. Wu J., Zou X. Traveling wave fronts of reaction-diffusion systems with delay. J. Dynamics Differ. Equ., 2001. Vol. 13. No. 3. Pp. 651–687.

33. Cohen D.S., Rosenblat S. Multi-species interac-tions with hereditary effects and spatial diffusion. J. Math. Biol., 1979. Vol. 7. Pp. 231–241.

34. Murray J.D. Mathematical Biology, 3-rd ed. New York, Springer, 2002.

35. Britton N.F. Reaction-Diffusion Equations and Their Applications to Biology. New York, Academic Press, 1986.

36. Cantrell R.S., Cosner C. Spatial Ecology via Re-action Diffusion Equations. Chichester, John Wiley & Sons, 2003.

37. Gourley S.A, So J. W.-H., Wu J.H. Nonlocality of reaction-diffusion equations induced by delay: biologi-cal modeling and nonlinear dynamics. J. Math. Sci., 2004. Vol. 124. No. 4. Pp. 5119–5153.

38. Aleshin S.V., Glyzin S.D., Kaschenko S.A. Uravnenie Kolmogorova – Petrovskogo – Piskunova s zapazdyvaniem [Fisher Kolmogorov – Petrovskii–Piscounov equation with delay. Model. Anal. Inform. Sist., 2015. Vol. 2. No. 2. Pp. 304–321 (in Russian).

39. Goryunov V.E. Dynamics of solutions of logistic equation with delay and diffusion in a planar domain. Theor. Math. Phys., 2022. Vol. 212. No. 2. Pp. 1092–1110.

40. Huang J., Zou X. Traveling wavefronts in diffu-sive and cooperative Lotka–Volterra system with de-lays. J. Math. Anal. Appl., 2002. Vol. 271. Pp. 455–466.

41. Song Y., Jiang H., Yuan Yu. Turing- hopf bifurca-tion in the reaction-diffusion system with delay and ap-plication to a diffusive predator-prey model. J. Appl. Anal. Comput., 2019. Vol. 9. No. 3. Pp. 1132–1164.

42. Trofimchuk E., Tkachenko V., Trofimchuk S. Slowly oscillating wave solutions of a single species reac-tion-diffusion equation with delay. J. Differ. Equ., 2008. Vol. 245. Pp. 2307–2332.

43. Bocharov G.A., Volpert V.A., Tasevich A.L. Reaction diffusion equations in immunology. Comput. Math. Math. Phys., 2018. Vol. 58. Pp. 1967–1976.

44. Hattaf K., Yousfi N. A generalized HBV model with diffusion and two delays. Comput. Math. Appl., 2015. Vol. 69. No. 1. Pp. 31–40.

45. Jia Yu. Bifurcation and pattern formation of a tumor immune model with time-delay and diffusion. Math. Comput. Simul., 2020. Vol. 178. Pp. 92–108.

46. Pan X., Shu H., Wang L., Wang X.-S. Dirichlet problem for a delayed diffusive hematopoiesis model. Nonlinear Anal.: Real World Appl., 2019. Vol. 48. Pp. 493–516.

47. Piotrowska M.J., Forys U. A simple model of carcinogenic mutations with time delay and diffusion. Math. Biosci. Eng., 2013. Vol. 10. No. 3. Pp. 861–872.

48. Ramirez-Carrasco C., Molina-Garay J. Existence and approximation of traveling wavefronts for the dif-fusive Mackey – Glass equation. Aust. J. Math. Anal. Appl., 2021. Vol. 18. No. 1. Pp. 1–12.

49. Cheng Y., Lu D., Zhou J., Wei J. Existence of traveling wave solutions with critical speed in a delayed diffusive epidemic model. Adv. Differ. Equ., 2019, 494.

50. Liu P.-P. Periodic solutions in an epidemic model with diffusion and delay. Appl. Math. Comput., 2015. Vol. 265. Pp. 275–291.

51. Zhu C.-C., Zhu J. Dynamic analysis of a delayed COVID-19 epidemic with home quarantine in temporal-spatial heterogeneous via global exponential attractor method. Chaos Solit. Fractals, 2021. Vol. 143, 110546.

52. Trofimchuk E., Pinto M., Trofimchuk S. Traveling waves for a model of the Belousov – Zhabotinsky reac-tion. J. Differ. Equ., 2013. Vol. 254. Pp. 3690–3714.

53. Zhang G.-B. Asymptotics and uniqueness of traveling wavefronts for a delayed model of the Bel-ousov–Zhabotinsky reaction. Applicable Analysis, 2020. Vol. 99. No. 10. Pp. 1639–1660.

54. Cao Ya., Cao Yu., Guo Zh., Huang T., Wen Sh. Global exponential synchronization of delayed memris-tive neural networks with reaction-diffusion terms. Neu-ral Networks, 2020. Vol. 123. Pp. 70–81.

55. Wang K., Teng Z., Jiang H. Global exponential synchronization in delayed reaction-diffusion cellular neural networks with the Dirichlet boundary conditions. Math. Comput. Model., 2010. Vol. 52. Pp. 12–24.

56. Yang Z., Xu D. Global dynamics for non-autonomous reaction-diffusion neural networks with time-varying delays. Theor. Comput. Sci., 2008. Vol. 403. Pp. 3–10.

57. Polyanin A.D., Sorokin V.G., Zhurov A.I. Differ-ential equations with delay: Properties, methods, solu-tions and models. Moscow, IPMech RAS Publ., 2022.

58. Polyanin A.D., Zhurov A.I. Functional constraints method for constructing exact solutions to delay reac-tion-diffusion equations and more complex nonlinear equations. Commun. Nonlinear Sci. Numer. Simul., 2014. Vol. 19. No. 3. Pp. 417–430.

59. Polyanin A.D., Zhurov A.I. The functional con-straints method: Application to non-linear delay reac-tion diffusion equations with varying transfer coeff-cients. Int. J. Non-Linear Mech., 2014. Vol. 67. Pp. 267–277.

60. Polyanin A.D., Zhurov A.I. Exact solutions of lin-ear and nonlinear differential-difference heat and diffu-sion equations with finite relaxation time. Int. J. Non-Linear Mech., 2013. Vol. 54. Pp. 115–126.

61. Polyanin A.D., Zhurov A.I. Exaсt separable solu-tions of delay reaсtion-diffusion equations and other nonlinear partial functional-differential equations. Commun. Nonlinear Sci. Numer. Simul., 2014. Vol. 19. No. 3. Pp. 409–416.

62. Polyanin A.D., Zhurov A.I. New generalized and functional separable solutions to nonlinear delay reac-tion diffusion equations. Int. J. Non-Linear Mech., 2014. Vol. 59. Pp. 16–22.

63. Polyanin A.D., Zhurov A.I. Nonlinear delay reac-tion-diffusion equations with varying transfer coef-fients: Exact methods and new solutions. Appl. Math. Lett., 2014. Vol. 37. Pp. 43–48.

64. Meleshko S.V., Moyo S. On the complete group classification of the reaction-diffusion equation with a delay. J. Math. Anal. Appl., 2008. Vol. 338. Pp. 448–466.

65. Polyanin A.D., Sorokin V.G. Postroenie tochnykh reshenij nelinejnykh uravnenij matematicheskoj fiziki s zapazdyvaniem s pomoshh'ju reshenij bolee prostykh uravnenij bez zapazdyvanija [Construction of exact solutions for nonlinear equations of mathematical phys-ics with delay using solutions of simpler equations with-out delay]. Vestnik NIYaU MIFI, 2020. Vol. 9. No. 2. Pp. 115–128 (in Russian).

66. Polyanin A.D., Sorokin V.G. Nelinejnye reakcionno-diffuzionnye uravnenija s zapazdyvaniem: Tochnye reshenija tipa begushhej Volny [Nonlinear de-lay reaction diffusion equations: Exact traveling wave solutions]. Vestnik NIYaU MIFI, 2015. Vol. 4. No. 2. Pp. 119–126 (in Russian).

67. Polyanin A.D., Nazaikinskii V.E. Handbook of Linear Partial Differential Equations for Engineers and Scientists, 2nd ed. Boca Raton, Chapman & Hall/CRC Press, 2016.

68. Tikhonov A.N., Samarskii A.A. Equations of Mathematical Physics. New York, Dover Publ., 1990.

69. Martin J.A., Rodriguez F., Company R. Analytic solution of mixed problems for the generalized diffusion equation with delay. Math. Comput. Modelling, 2004. Vol. 40. Pp. 361–369.

70. Reyes E., Rodriguez F., Martin J.A. Analytic-numerical solutions of diffusion mathematical models with delays. Comput. Math. Appl., 2008. Vol. 56. Pp. 743–753.

71. Khusainov D.Y., Ivanov A.F., Kovarzh I.V. Solu-tion of one heat equation with delay. Nonlinear Oscilla-tions, 2009. Vol. 12. No. 2. Pp. 260–282.

72. Khusainov D.Y., Pokojovy M., Azizbayov E.I. On classical solvability for a linear 1D heat equation with constant delay. Konstanzer Schriften in Mathematik, 2013. No. 316.

73. Khusainov D., Pokojovy M., Reinhard R. Strong and mild extrapolated L2-solutions to the heat equation with constant delay. SIAM J. Math. Anal., 2015. Vol. 47. No. 1. Pp. 427–454.


Review

For citations:


Polyanin A.D., Sorokin V.G. SOLUTIONS OF LINEAR INITIAL-BOUNDARY VALUE PROBLEMS OF REACTION-DIFFUSION TYPE WITH DELAY. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2023;12(3):153-164. (In Russ.) https://doi.org/10.26583/vestnik.2023.286

Views: 154


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)