Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

MATHEMATICAL MODEL OF PLASMA EQUILIBRIUM IN THE MULTIPLY CONNECTED DOMAIN OF A MAGNETIC TRAP

https://doi.org/10.26583/vestnik.2024.5.4

EDN: MCGOAK

Abstract

The article clarifies the numerical model and the results of calculations of equilibrium plasma configurations in the magnetic trap «Belt» from the class of Galatea traps proposed by A.I. Morozov. The confining magnetic field is created by current-carrying conductors immersed in the plasma but not in contact with it. In a series of previous works, the geometry and basic regularities of configurations in the toroidal trap «Belt» straightened into a cylinder with two conductors parallel to its axis were researched. The two-dimensional plasmostatic model of the configuration is based on the numerical solution of the boundary value problem with the known Grad-Shafranov equation for the magnetic flux function in the cross-section of the cylinder. It contained an essential simplifying assumption, that makes it possible to deal with a single-connected domain of the problem solution: conductors were not excluded from the domain, and currents in them were represented by additional summands in equation. In the proposed work this simplification is absent, and the problem is posed in a multiply connected domain of out of conductors of square cross section. The role of the electric current in the formation and maintenance of the equilibrium magnetoplasma configuration is played by a boundary condition containing the circulation of the magnetic field along the boundary of each conductor. In a series of calculations with different values of dimensionless parameters of the problem in the multiply connected domain, it was found that the main properties of the configuration and the regularities of their dependence on the parameters qualitatively coincide with those obtained earlier in the single-connected domain. This indicates the legitimacy of the previous version of the model and at the same time clarifies its result. The dependence of the geometry and quantitative characteristics of configurations on the dimensionless parameters of the problem has been clarified

About the Authors

K. V. Brushlinskii
M.V. Keldysh institute of applied mathematics, RAS; National research nuclear university «MEPhI»
Russian Federation


M. T. Istomina
National research nuclear university «MEPhI»
Russian Federation


V. V. Kriuchenkov
National research nuclear university «MEPhI»
Russian Federation


E. V. Stepin
M.V. Keldysh institute of applied mathematics, RAS; National research nuclear university «MEPhI»
Russian Federation


References

1. D'yachenko V.F., Imshennik V.S. Dvumernaya MGD-model' plazmennogo fokusa Z-pincha [Two-dimensional MHD model of the Z-pinch plasma focus]. Voprosy teorii plazmy/ Pod red. M.A. Leontovicha. Moscow, Atomizdat Publ., 1974. Iss. 8. Pp. 164‒246 (in Russian).

2. Braginskij S.I., Gel'fand I.M., Fedorenko R.P. Teoriya szhatiya i pul'sacij plazmennogo stolba v moshchnom impul'snom razryade [Theory of compression and pulsations of a plasma column in a powerful pulsed discharge]. Fizika plazmy i problema upravlyaemyh termoyadernyh reakcij / Pod red. M. A. Leontovicha. Moscow, Izd. AN SSSR Publ., 1958. Vol. 4. Pp. 201–221 (in Russian).

3. Bezbatchenko A.L., Golovin I.N., Kozlov P.N., Strelkov V.S., YAvlinskij N.A. Bezelektrodnyj razryad s bol'shoj siloj toka v toroidal'noj kamere s prodol'nym magnitnym polem [Electrodeless discharge with high current intensity in a toroidal chamber with a longitudinal magnetic field]. Fizika plazmy i problema upravlyaemyh termoyadernyh reakcij Pod red. M. A. Leontovicha. Moscow, Izd. AN SSSR Publ. Vol. 4. Pp. 116‒133 (in Russian).

4. Arcimovich L.A. Upravlyaemye termoyadernye reakcii [Controlled thermonuclear reactions] Moscow, Gos. Izd. fiz.-mat. Literature Publ., 1961. 468 p

5. Morozov A.I. Galatheas’ ‒ plazma confinement systems in which the conductors are immersed in the plasma. Sov. J. Plasma Phys., 1992. Vol. 18 (3). Pp. 159‒165.

6. Morozov A.I. and Savel’ev V.V. On ‎Galateas ‒ magnetic traps with plasma-embedded conductors. Phys. Usp., 1998. Vol. 41 (11). Pp. 1049‒1089.

7. Morozov A.I. and Frank A.G. ‎Galateya toroidal multipole trap with azimuthal current. Plasma Phys. Rep., 1994. Vol. 20 (11). Pp. 879‒886.

8. Brushlinskii K.V. and Kondratyev I.A. ‎Comparative analysis of plasma equilibrium computations in toroidal and cylindrical magnetic traps. Math. Models Comput. Simul., 2019. Vol. 11 (1). Pp. 121‒132.

9. Syrovatskij S.I. Tokovye sloi i vspyshki v kosmicheskoj i laboratornoj plazme [Current layers and flares in space and laboratory plasma]. Vestnik AN SSSR. 1977. No. 10. Pp. 33–44 (in Russian).

10. Frank A.G., Kyrie N.P., Markov V.S. Experiments of the Formation of Galatea-Belt Magnetoplasma Configurations. Plasma Physics Reports, 2019. Vol. 45 (1). Pp. 25‒32.

11. Brushlinskij K.V. Matematicheskie i vychislitel'nye zadachi magnitnoj gazodinamiki [Mathematical and computational problems of magnetic gas dynamics]. Moscow, BINOM, Laboratoriya znanij Publ., 2009. 200 p.

12. Brushlinskij K.V. Matematicheskie osnovy vychislitel'noj mekhaniki zhidkosti, gaza i plazmy [Mathematical foundations of computational mechanics of liquid, gas and plasma]. Dolgoprudny, Izd. dom «Intellekt» Publ., 2017.

13. Shafranov V.D. On magnetohydrodynamical equilibrium configurations. Sov. Phys. JEPT, 1958. Vol. 6 (3). Pp. 545‒554.

14. Grad. H., Rubin H. Hydrodynamic equilibria and force-free fields. Proc. 2nd United Nations Int. Conf. on the Peaceful Uses of Atomic Energy. Geneva, 1958. Vol. 31. Pp. 190‒197.

15. Dudnikova G.I., Morozov A.I., Fedoruk M.P. Chislennoe modelirovanie pryamyh plazmennyh konfiguracij galatej tipa «Poyas» [Numerical modeling of direct plasma configurations of «Belt» type Galateas]. Fizika plazmy, 1997. Vol. 23. No. 5. Pp. 387–396 (in Russian).

16. Dudnikova G.I., Fedoruk M.P., YAkovlev V.S. Chislennoe modelirovanie magnitoplazmennyh konfiguracij Galateya-Poyas [Numerical modeling of Galatea-Belt magnetoplasma configurations]. Vychislitel'nye tekhnologii, 2000. Vol. 5. No. 2. Pp. 26–34 (in Russian).

17. Shafranov V.D. Ravnovesie plazmy v magnitnom pole [Plasma equilibrium in a magnetic field]. Voprosy teorii plazmy vol. 2/ Pod red. M.A. Leontovicha. Moscow, Gosatomizdat Publ.,1963. Iss. 2. Pp. 92–131 (in Russian).

18. Rozhdestvenskij B.L., Yanenko N.N. Sistemy kvazilinejnyh uravnenij i ih prilozheniya k gazovoj dinamike [Systems of quasilinear equations and their applications to gas dynamics]. Moscow, Nauka Publ., 1978. 685 p.

19. Zel’dovich Ya.B., Barenblatt G.I., Librovich V.B. and Makhviladze G.M. The Mathematical Theory of Combustion and Explosions. New York, Consultants Bureau, 1985.

20. Peaceman D.W., Rachford H.H. The numerical solution of parabolic and elliptic differential equations. J. Soc. Industr. Appl. Math.,1955. Vol. 3. No. 1. Pp. 28–42.

21. Douglas J. On the numerical integration of ∂^2 u/∂x^2+∂^2 u/∂y^2=∂u/∂t by implicit method. J. Soc. Industr. Appl. Math., 1955. Vol. 3. No. 1. Pp. 42–65.

22. Yanenko N.N. Metod drobnyh shagov resheniya mnogomernyh zadach matematicheskoj fiziki [Method of fractional steps for solving multidimensional problems of mathematical physics]. Novosibirsk, Nauka Publ., 1967. 197 p.

23. Brushlinskii K.V., Zueva N.M., Mikhailo-va M.S., Morozov A.I., Pustovitov V.D. and Tuzova N.B. ‎Numerical simulation of straight helical sheaths with conductors immersed in plasma. Plasma Phys. Rep., 1994. Vol. 20 (3). Pp. 257‒264 (1994).

24. Brushlinskij K.V., Morozov A.I., Petrovskaya N.B. Chislennoe modelirovanie vintovoj ravnovesnoj konfiguracii s plazmoj na separatrise [Numerical modeling of a helical equilibrium configuration with plasma on a separatrix]. Matematicheskoe modelirovanie, 1998. Vol. 10. No. 11. Pp. 29‒36 (in Russian).

25. Brushlinskii K.V., Gol’dich A.S. and Desyato¬va A.S. ‎Plasmostatic models of magnetic galateya-traps. Math. Models Comput. Simul., 2013. Vol. 5 (2). Pp. 156‒166.

26. Brushlinskii K.V. and Ignatov P.A. A plasmo-static model of the galateya-belt magnetic trap. Com-put. Math. Math. Phys., 2010. Vol. 50 (12). Pp. 2071‒2081.

27. Brushlinskii K.V. and Stepin E.V. Stability is-sues in two-dimensional mathmatical models of plasma equilibrium in magnetic galathea traps. Diff. Eqns., 2021. Vol. 57 (7). Pp. 835‒847.

28. Brushlinskii K.V., Kryuchenkov V.V. and Ste¬pin E.V. Mathematical Model of Equilibrium Plasma Configurations in Magnetic Traps and Their Stability Analysis. Proceedings of the Steklov Institute of Math-ematics, 2023. Vol. 322. Pp. 52–64.

29. Brushlinskii K.V., Stepin E.V. On equilibrium magnetoplasma configurations in «Galatea-Belt» magnetic traps. J. Phys.: Conf. Ser., 2021, Vol. 2028. Pp. 012026.

30. Brushlinskii K.V., Stepin E.V. Mathematical model and numerical simulation of equilibrium plasma configurations in «Threeleaf» magnetic traps. Lobachevskii journal of mathematics, 2023. Vol. 14. No. 1. Pp. 20‒25


Review

For citations:


Brushlinskii K.V., Istomina M.T., Kriuchenkov V.V., Stepin E.V. MATHEMATICAL MODEL OF PLASMA EQUILIBRIUM IN THE MULTIPLY CONNECTED DOMAIN OF A MAGNETIC TRAP. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2024;13(5):316-328. (In Russ.) https://doi.org/10.26583/vestnik.2024.5.4. EDN: MCGOAK

Views: 110


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)