Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

NONLINEAR SCHRÖDINGER EQUATIONS WITH DELAY: EXACT SOLUTIONS, REDUCTIONS, AND TRANSFORMATIONS

https://doi.org/10.26583/vestnik.2024.5.6

EDN: PALOUN

Abstract

Schrödinger equations with cubic and more complex nonlinearities containing the desired function with a delayed argument are considered. The physical considerations that can lead to the appearance of a delay in such nonlinear equations and models are expressed. One-dimensional reductions are described that lead the studied partial differential equations with delay to simpler ordinary differential equations or ordinary differential equations with delay. Exact solutions of the nonlinear Schrödinger equation of general form with delay, which are expressed in quadratures, are found. Special attention is paid to three equations with cubic nonlinearity, which allow simple solutions in elementary functions, as well as more complex exact solutions with generalized separation of variables. In addition to nonlinear Schrödinger equations with constant delay, some more complex equations with variable delay of general form are also studied. The results obtained can be useful for testing mathematical models described by the nonlinear Schrödinger equation with delay.

About the Authors

A. D. Polyanin
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Russian Federation


N. A. Kudryashov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


References

1. Agrawal G.P. Nonlinear Fiber Optics, 4th ed. New York: Academic Press, 2007.

2. Kivshar Yu.S., Agrawal G.P. Optical Solitons: From Fibers to Photonic Crystals. San Diego: Academic Press, 2003.

3. Kodama Y., Hasegawa A. Nonlinear pulse propagation in a monomode dielectric guide. IEEE Journal of Quantum Electronics, 1987. Vol. 23. No.5. Pp. 510-524.

4. Drazin P.G., Johnson R.S. Solitons: An Introduction. Cambridge: Cambridge University Press, 1989.

5. Ablowitz M.J., Clarkson P.A. Solitons Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge University Press, 1991.

6. Kivshar Yu.S., Malomed B.A. Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys., 1989. Vol. 63. Pp. 763–915.

7. Akhmanov S.A., Sukhorukov A.P., Khokhlov R.V. Self-focusing and diffraction of light in a nonliner medium. Soviet Physics Uspekhi, 1968. Vol. 10. No. 5. Pp. 609–636.

8. Hasegawa A., Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Applied Physics Letters, 1973. Vol. 23. No. 3. Pp. 142–144.

9. Hasegawa A., Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Applied Physics Letters, 1973. Vol. 23. No. 4. Pp. 171–172.

10. Tai K., Hasegawa A., Tomita A. Observation of modulational instability in optical fibers. Physical Review Letters, 1986. Vol. 56. No. 2. Pp. 135–138.

11. Polyanin A.D., Zaitsev V.F. Handbook of Nonlinear Partial Differentia Equations, 2nd ed. Boca Raton: CRC Press, 2012.

12. Polyanin A.D. Handbook of Exact Solutions to Mathematical Equations. Boca Raton: CRC Press–Chapman & Hall, 2025.

13. Kudryashov N.A. A generalized model for description of propagation pulses in optical fiber. Optik, 2019. Vol. 189. No. 42, 52.

14. Kudryashov N.A. Solitary and periodic waves of the hierarchy for propagation pulse in optical fiber. Optik, 2019. Vol. 194. 163060.

15. Kudryashov N.A. Mathematical model of propagation pulse in optical fiber with power nonlinearities. Optik, 2020. Vol. 212. 164750.

16. Kudryashov N.A. Solitary waves of the non-local Schrödinger equation with arbitrary refractive index. Optik, 2021. Vol. 231. 166443.

17. Kudryashov N.A. Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refractive insex. Applied Mathematics Letters, 2022, Vol. 128. 107888.

18. Kudryashov N.A. Almost general solution of the reduced higher-order nonlinear Schrödinger equation. Optik, 2021. Vol. 230. 66347.

19. Yildirim Y. Optical solitons to Schrödinger-Hirota equation in DWDM system with modified simple equation integration architecture. Optik, 2019. Vol. 182. Pp. 694–701.

20. Zayed E.M.E., Shohib R.M.A., Biswas A., Eki-ci M., Alshomrani A.S., Khan S., Zhou Q., Belic M.R. Dispersive solitons in optical fibers and DWDM networks with Schrödinger–Hirota equation. Optik, 2019. Vol. 199. 163214.

21. Zayed E.M.E., Shohib R.M.A., Alngar M.E.M., Biswas A., Moraru L., Khan S., Yildirim Y., Alshe-hri H.M., Belic M.R. Dispersive optical solitons with Schrödinger-Hirota model having multiplicative white noise via Ito Calculus, Physics Letters, Sect. A: General, Atomic and Solid State Physics, 2022. Vol. 445. 128268.

22. Wang G., Kara A.H., Biswas A., Guggilla P., Alzahrani A.K., Belic M.R. Highly dispersive optical solitons in polarization-preserving fibers with Kerr law nonlinearity by Lie symmetry. Physics Letters, Sect. A: General, Atomic and Solid State Physics, 2022. Vol. 421. 127768.

23. Biswas A., Hubert M.B., Justin M., Betchewe G., Doka S.Y., Crepin K.T.,Ekici M., Zhou Q., Mosho-koa S.P., Belic M. Chirped dispersive bright and singular optical solitons with Schrödinger-Hirota equation. Optik, 2018. Vol. 168. Pp. 192–195.

24. Zhou Q., Xu M., Sun Y., Zhong Y., Mirzazadeh M. Generation and transformation of dark solitons, anti-dark solitons and dark double-hump solitons. Nonlinear Dynamics, 2022. Vol. 110. No. 2. Pp. 1747–1752.

25. Wu J. Theory and Applications of Partial Functional Differential Equations. New York: Springer-Verlag, 1996.

26. Polyanin A.D., Sorokin V.G., Zhurov A.I. Delay Ordinary and Partial Differential Equations. CRC Press: Boca Raton–London, 2024.

27. Polyanin A.D., Sorokin V.G. Nonlinear pantograph-type diffusion PDEs: Exact solutions and the principle of analogy. Mathematics, 2021. Vol. 9. No 5. 511.

28. Polyanin A.D., Sorokin V.G. Exact solutions of reaction-diffusion PDEs with anisotropic time delay. Mathematics, 2023. Vol. 11. No. 14. 3111.

29. Meleshko S.V., Moyo S. On the complete group classification of the reaction diffusion equation with a delay. J. Math. Anal. Appl., 2008. Vol. 338. Pp. 448–466.

30. Polyanin A.D., Zhurov A.I. Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations. Commun. Nonlinear Sci. Numer. Simul., 2014. Vol. 19. No. 3. Pp. 417–430.

31. Polyanin A.D., Zhurov A.I. New generalized and functional separable solutions to nonlinear delay reaction-diffusion equations. Int. J. Non-Linear Mech., 2014. Vol. 59. Pp. 16–22.

32. Polyanin A.D., Sorokin V.G. Construction of exact solutions to nonlinear PDEs with delay using solutions of simpler PDEs without delay. Commun. Non-linear Sci. Numer. Simul., 2021. Vol. 95, 105634.

33. Polyanin A.D., Zhurov A.I. Generalized and functional separable solutions to nonlinear delay Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul., 2014. Vol. 19. No. 8. Pp. 2676–2689.

34. Long F.-S., Meleshko S.V. On the complete group classification of the one dimensional nonlinear Klein–Gordon equation with a delay. Math. Methods Appl. Sciences, 2016. Vol. 39. No. 12. Pp. 3255–3270.

35. Sakbaev V.Z., Shiryaeva A.D. Nonlinear Schrödinger equation with delay and its regularization. Lobachevskii J. Mathematics, 2023. Vol. 44. No. 3. Pp. 936–949.

36. Galaktionov V.A., Svirshchevskii S.R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Boca Raton: Chapman & Hall/CRC Press, 2007.

37. Agirseven D. On the stability of the Schrödinger equation with time delay. Filomat, 2018. Vol. 32. No. 3. Pp. 759–766.

38. Hale J.K., Lunel S.M.V. Introduction to Functional Differential Equations. New York: Springer, 1993.

39. Zhao Z., Ge W. Traveling wave solutions for Schrödinger equation with distributed delay. Applied Mathematical Modelling, 2011. Vol. 35. Pp. 675– 687.

40. Chen C.-F., Luo B. The freeze of intrapulse Raman scattering effect of ultrashort solitons in optical fiber. Optik, 2007. Vol. 118. No. 1. Pp. 1–4


Review

For citations:


Polyanin A.D., Kudryashov N.A. NONLINEAR SCHRÖDINGER EQUATIONS WITH DELAY: EXACT SOLUTIONS, REDUCTIONS, AND TRANSFORMATIONS. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2024;13(5):340-349. (In Russ.) https://doi.org/10.26583/vestnik.2024.5.6. EDN: PALOUN

Views: 131


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)