Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

NONLINEAR SCHRÖDINGER EQUATION WITH DISPERSION AND POTENTIAL OF THE GENERAL FORM: EXACT SOLUTIONS AND REDUCTIONS

https://doi.org/10.26583/vestnik.2024.6.3

EDN: OEBIJV

Abstract

The nonlinear Schrödinger equation of a general form is investigated, in which the chromatic dispersion and the potential are given by two arbitrary functions. The equation under consideration is a natural generalization of a wide class of related nonlinear equations that are often encountered in various sections of theoretical physics, including nonlinear optics, superconductivity, and plasma physics. Exact solutions of the nonlinear Schrödinger equation of general form are found, which are expressed in quadratures. One-dimensional non-symmetry reductions are described, which reduce the studied partial differential equation to simpler ordinary differential equations or systems of such equations. Special attention is paid to equations whose dispersion is given by a power function. The exact solutions obtained in this work can be used as test problems intended to assess the accuracy of numerical methods for integrating nonlinear equations of mathematical physics.

About the Authors

A. D. Polyanin
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Russian Federation


N. A. Kudryashov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


References

1. Agrawal G.P. Nonlinear Fiber Optics, 4th ed. New York: Academic Press, 2007.

2. Kivshar Yu.S., Agrawal G.P. Optical Solitons: From Fibers to Photonic Crystals. San Diego: Academic Press, 2003.

3. Kodama Y., Hasegawa A. Nonlinear pulse propagation in a monomode dielectric guide. IEEE Journal of Quantum Electronics, 1987. Vol. 23. No. 5. Pp. 510-524.

4. Drazin P.G., Johnson R.S. Solitons: An Introduction. Cambridge: Cambridge University Press, 1989.

5. Ablowitz M.J., Clarkson P.A. Solitons Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge University Press, 1991.

6. Kivshar Yu.S., Malomed B.A. Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys., 1989. Vol. 63. Pp. 763–915.

7. Akhmanov S.A., Sukhorukov A.P., Khokhlov R.V. Self-focusing and diffraction of light in a nonliner medium. Soviet Physics Uspekhi, 1968. Vol. 10. No. 5. Pp. 609–636.

8. Hasegawa A., Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Applied Physics Letters, 1973. Vol. 23. No. 3. Pp. 142–144.

9. Hasegawa A., Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Applied Physics Letters, 1973. Vol. 23. No. 4. Pp. 171–172.

10. Tai K., Hasegawa A., Tomita A. Observation of modulational instability in optical fibers. Physical Review Letters, 1986. Vol. 56. No. 2. Pp. 135–138.

11. Weiss J., Tabor M., Carnevale G. The Painleve property for partial differential equations. J. Math. Phys., 1982. Vol. 24. No. 3. Pp. 522–526.

12. Kudryashov N.A. Painlevé analysis of the resonant third-order nonlinear Schrödinger equation. Appl. Math. Letters, 2024. Vol. 158. 109232.

13. Kudryashov N.A. Painlevé analysis of the Sasa–Satsuma equation. Phys. Letters A, 2024. Vol. 525. 129900.

14. Polyanin A.D., Zaitsev V.F. Handbook of Nonlinear Partial Differential Equations, 2nd ed. Boca Raton: CRC Press, 2012.

15. Al Khawaja U., Al Sakkaf L. Handbook of Exact Solutions to the Nonlinear Schrödinger Equations. Bristol: Institute of Physics Publ., 2019.

16. Polyanin A.D. Handbook of Exact Solutions to Mathematical Equations. Boca Raton: CRC Press–Chapman & Hall, 2025.

17. Kudryashov N.A. A generalized model for description of propagation pulses in optical fiber. Optik, 2019. Vol. 189. No. 42. 52.

18. Kudryashov N.A. Solitary and periodic waves of the hierarchy for propagation pulse in optical fiber. Optik, 2019. Vol. 194. 163060.

19. Kudryashov N.A. Mathematical model of propagation pulse in optical fiber with power nonlinearities. Optik, 2020. Vol. 212. 164750.

20. Kudryashov N.A. Solitary waves of the non-local Schrödinger equation with arbitrary refractive index. Optik, 2021. Vol. 231. 166443.

21. Kudryashov N.A. Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refractive insex. Applied Mathematics Letters, 2022. Vol. 128. 107888.

22. Kudryashov N.A. Almost general solution of the reduced higher-order nonlinear Schrödinger equation. Optik, 2021. Vol. 230. 66347.

23. Yildirim Y. Optical solitons to Schrodinger-Hirota equation in DWDM system with modified simple equation integration architecture. Optik, 2019. Vol. 182. Pp. 694–701.

24. Zayed E.M.E., Shohib R.M.A., Biswas A., Ekici M., Alshomrani A.S., Khan S., Zhou Q., Belic M.R. Dispersive solitons in optical fibers and DWDM networks with Schrodinger–Hirota equation. Optik, 2019. Vol. 199. 163214.

25. Zayed E.M.E., Shohib R.M.A., Alngar M.E.M., Biswas A., Moraru L., Khan S., Yildirim Y., Alshehri H.M., Belic M.R. Dispersive optical solitons with Schrodinger-Hirota model having multiplicative white noise via Ito Calculus. Physics Letters A: General, Atomic and Solid State Physics, 2022. Vol. 445. 128268.

26. Wang G., Kara A.H., Biswas A., Guggilla P., Alzahrani A.K., Belic M.R. Highly dispersive optical solitons in polarization-preserving fibers with Kerr law nonlinearity by Lie symmetry. Physics Letters A: General, Atomic and Solid State Physics, 2022. Vol. 421. 127768.

27. Biswas A., Hubert M.B., Justin M., Betchewe G., Doka S.Y., Crepin K.T., Ekici M., Zhou Q., Moshokoa S., Belic M. Chirped dispersive bright and singular optical solitons with Schrodinger–Hirota equation. Optik, 2018. Vol. 168. Pp. 192–195.

28. Zhou Q., Xu M., Sun Y., Zhong Y., Mirzazadeh M. Generation and transformation of dark solitons, anti-dark solitons and dark double-hump solitons. Nonlinear Dynamics, 2022. Vol. 110. No. 2. Pp. 1747–1752.

29. Polyanin A.D., Kudryashov N.A. Nelineynyye uravneniya Shredingera s zapazdyvaniyem: Tochnyye resheniya, reduktsii i preobrazovaniya [Nonlinear Schrödinger equations with delay: Exact solutions, reductions, and transformations]. Vestnik NIYaU MIFI, 2024. Vol. 13. No. 5. Pp. 340–349 (in Russian).

30. Bullough R.K. Solitons, Physics Bulletin, 1978. Vol. 29. No. 2. Pp. 78–82.

31. Polyanin A.D., Zhurov A.I. Separation of Variables and Exact Solutions to Nonlinear PDEs. Boca Raton–London: CRC Press, 2022.

32. Polyanin A.D., Nazaikinskii V.E. Handbook of Linear Partial Differential Equations for Engineers and Scientists, 2nd ed. Boca Raton–London: CRC Press, 2016.

33. Polyanin A.D., Zhurov A.I. Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations. Commun. Nonlinear Sci. Numer. Simul., 2014. Vol. 19. No. 3. Pp. 417–430.

34. Polyanin A.D., Zhurov A.I. The functional constraints method: Application to non-linear delay reaction-diffusion equations with varying transfer coefficients, Int. J. Non-Linear Mech., 2014. Vol. 67. Pp. 267–277.

35. Polyanin A.D., Sorokin V.G., Zhurov A.I. Delay Ordinary and Partial Differential Equations. Boca Raton–London: CRC Press, 2024.

36. Polyanin A.D., Zaitsev V.F. Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems. Boca Raton–London: CRC Press, 2018.


Review

For citations:


Polyanin A.D., Kudryashov N.A. NONLINEAR SCHRÖDINGER EQUATION WITH DISPERSION AND POTENTIAL OF THE GENERAL FORM: EXACT SOLUTIONS AND REDUCTIONS. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2024;13(6):394-402. (In Russ.) https://doi.org/10.26583/vestnik.2024.6.3. EDN: OEBIJV

Views: 110


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)