SYMMETRIES AND INVARIANT SOLUTIONS OF GENERALIZED MODIFIED LIN – REISSNER – TSIEN EQUATIONS
https://doi.org/10.26583/vestnik.2024.6.4
EDN: ORVJUU
Abstract
The article provides a group analysis of nonlinear second-order partial differential equations that model the propagation of shear waves in a nonlinear elastic cylindrical shell interacting with an external elastic medium. The equations contain cubic nonlinearity and generalize the well-known models of Lin – Reissner – Tsian and Khokhlov – Zabolotskaya. Their classical symmetries are found using a universal algorithm of commutative algebra, which consists of constructing a Gröbner basis of a system of defining equations to find the explicit form of the generating function of the symmetry group. To construct solutions that are invariant under a group of shifts in the space of independent variables, the hodograph method was used, which made it possible to move from a nonlinear partial differential equation to a system of linear equations with variable coefficients. For the self-similar regime, invariant under extensions, a nonlinear equation is obtained, the linear part of which is exactly solved in terms of Bessel functions and trigonometric functions. The conditions necessary for the physical realizability of exact solutions are established.
About the Authors
A. I. ZemlyanukhinRussian Federation
A. V. Bochkarev
Russian Federation
References
1. Lin C.C., Reissner E., Tsien H.S. On two-dimensional non steady motion of a slender body in a compressible fluid. J. Math. and Phys. 1948. Vol. 27. No. 3. Pp. 220–231.
2. Ibragimov N.H. A practical course in differential equations and mathematical modelling. Higher Education Press and World Scientific, Beijing, Singapore, 2009.
3. Polyanin A.D., Zaitsev V.F. Handbook of nonlinear partial differential equations, 2nd ed. Boca Raton: CRC Press, 2012.
4. Rudenko O.V. K 40-letiyu uravneniya Hohlova–Zabolotskoj. [The 40th anniversary of the Khokhlov – Zabolotskaya equation]. Akusticheskij zhurnal, 2010. Vol. 56. P. 457–466 (in Russian).
5. Zemlyanukhin A.I., Bochkarev A.V., Artamonov N.A. Shear waves in a nonlinear elastic cylindrical shell. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024. Vol. 24. Iss. 4. Pp. 578–586.
6. Zarembo L.K., Krasil’nikov V.A. Nelinejnye yavleniya pri rasprostranenii uprugih voln v tverdyh telah [Nonlinear phenomena in the propagation of elastic waves in solids]. Uspekhi fizicheskih nauk, 1971. Vol. 13. Iss. 6. Pp. 778–797 (in Russian).
7. Ryskin N.M., Trubetskov D.I. Nelineynye volny [Nonlinear waves]. Moscow, Lenand, 2017. 312 p. (in Russian).
8. Polyanin A.D., Kudryashov N.A. Nelineinye uravneniya Shredingera s zapazdyvaniem: tochnyie resheniya, reductsii i transformatsii [Nonlinear Schrödinger equations with delay: exact solutions, reductions, and transformations]. Vestnik NIYaU MIFI, 2024. Vol. 13(5). Pp. 340–349 (in Russian).
9. Kaplunov J., Prikazchikov D., Sultanova L. Justification and refinement of Winkler–Fuss hypothesis. Z. Angew. Math. Phys., 2018. Vol. 69. Pp. 80.
10. Dillard D.A., Mukherjee B., Karnal P., Batra R.C., Frechette J. A review of Winkler’s foundation and its profound influence on adhesion and soft matter applications. Soft Matter, 2018. Vol. 14. Pp. 3669–3683.
11. Stepanyants Y. Nelinejnye volny vo vrashchayushchemsya okeane (uravnenie Ostrovskogo, ego obobshcheniya i prilozheniya) [Nonlinear waves in a rotating ocean (the Ostrovsky equation and its generalizations and applications)]. Izv. RAN. Fizika atmosfery i okeana, 2020. Vol. 56. Pp. 16–32.
12. Ostrovsky L. Asymptotic perturbation theory of waves, London: Imperial College Press, 2014.
13. Zemlyanukhin A.I., Bochkarev A.V., Andrianov I.V., Erofeev V.I. The Schamel-Ostrovsky equation in nonlinear wave dynamics of cylindrical shells. J. Sound Vib., 2021. Vol. 491. 115752.
14. Olver P. Applications of Lie groups to differential equations. Springer: New York, NY, USA, 1993.
15. Kudryashov N.A. Metody nelineinoi matematicheskoi fiziki: uchebnoye posobie [Methods of nonlinear mathematical physics: tutorial]. Dolgoprudnyi: Intellekt, 2010 (in Russian).
16. Clarkson P.A., Mansfield E.L. Algorithms for the nonclassical method of symmetry reductions. SIAM Journal on Applied Mathematics, 1994. Vol. 54(6). Pp. 1693–1719.
17. Cox D., Little J., O'Shea D. Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra. N.Y.: Springer-Verlag, 1992.
18. Clarkson P.A., Kruskal M.D. New similarity reductions of the Boussinesq equation // Journal of Mathematical Physics, 1989. Vol. 30. Pp. 2201–2213.
19. Krasil’shchik I.S., Lychagin V.V., Vinogradov A.M. Introduction to the geometry of nonlinear differential equations, Adv. Stud. Contemp. Math. Vol. 1. New York: Gordon and Breach science publishers, 1986, 441 p.
20. Symmetries and conservation laws for differential equations of mathematical physics. ed. Krasil’shchik I.S., Vinogradov A.M. Providence, RI: Transl. Math. Monogr., 182, Amer. Math. Soc., 1999.
Review
For citations:
Zemlyanukhin A.I., Bochkarev A.V. SYMMETRIES AND INVARIANT SOLUTIONS OF GENERALIZED MODIFIED LIN – REISSNER – TSIEN EQUATIONS. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2024;13(6):403-410. (In Russ.) https://doi.org/10.26583/vestnik.2024.6.4. EDN: ORVJUU