Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

PIC MODEL OF RELATIVISTIC TWO-CAVITY REFLEX KLYSTRON WITH MAGNETIC MIRROR

https://doi.org/10.26583/vestnik.2025.1.1

EDN: BXVVKZ

Abstract

The concept and design of a relativistic two-cavity reflex klystron with a magnetic mirror is proposed. A 2.5-D computer particle-in-cell (PIC) model of a relativistic two-cavity reflex klystron with magnetic mirror based on the KARAT PIC code was created. The model takes into account the input of an external microwave from the master oscillator, allows self-consistent calculation of the electron dynamics and output characteristic of the klystron. Comparative simulation of relativistic two-cavity reflex klystron with magnetic mirror and relativistic two-cavity transit klystron without magnetic mirror was carried out. It was been shown that the spectral characteristics of both klystrons are close. The output power of the reflex klystron and the transit klystron are compared. It was found that the output power of the reflex klystron is about 1.4 times more that of the transit klystron. The influence of magnetic mirror position on the value of the generated microwave power of the reflex klystron has been studied.

About the Authors

A. E. Dubinov
Sarov Institute of Physics and Technology – Branch of National Research Nuclear University “Moscow Engineering Physics Institute” (SarFTI–NRNU MEPhI); Russian Federal Nuclear Center – All-Russia Scientific and Research Institute of Experimental Physics (RFNC–VNIIEF)
Russian Federation


H. N. Kolesov
Sarov Institute of Physics and Technology – Branch of National Research Nuclear University “Moscow Engineering Physics Institute” (SarFTI–NRNU MEPhI); Russian Federal Nuclear Center – All-Russia Scientific and Research Institute of Experimental Physics (RFNC–VNIIEF)
Russian Federation


References

1. Varian R.,Varian S. F. A high frequency oscillator and amplifier. Journal of Applied Physics, 1939. Vol.10, Pp. 321‒327. https://doi.org/10.1063/1.1707311

2. Caryotakis G. The klystron: A microwave source of surprising range and endurance. Physics of Plasmas, 1998. Vol.5, Pp.1590‒1598. https://doi.org/10.1063/1.872826

3. Tsimring S. E. Electron beams and microwave vacuum electronics. Hoboken, NJ: John Wiley & Sons, 2006. 573 p.

4. Gilmour A. S. Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons. Boston & London: Artech House, 2011.

5. Nguyen K. T., Abe D. K., Pershing D. E., Levush B., Wright E. L., Bohlen H., etc. High-power four-cavity S-band multiple-beam klystron design. IEEE Transactions on Plasma Science, 2004. Vol.32, Pp.1119‒1135. https://doi.org/10.1109/TPS.2004.828884

6. Cai J. C, Syratchev I., Burt G. Design study of a high-power Ka-band high-order-mode multibeam klystron. IEEE Transactions on Electron Devices, 2020. Vol.67. Pp. 5736‒5742. https://doi.org/10.1109/TED.2020.3028348

7. Behtouei M., Spataro B., Di Paolo F., Leggieri A. The Ka-band high power klystron amplifier design program of INFN. Vacuum, 2021. Vol.191, 110377-1‒6. https://doi.org/10.1016/j.vacuum.2021.110377

8. Boyd M. R., Dehn R. A., Hickey J. S., Mihran T. G. The multiple-beam klystron. IRE Transactions on Electron Devices, 1962. Vol.9, Pp. 247‒252. https://doi.org/10.1109/T-ED.1962.14979

9. Korolyov A. N., Gelvich E. A., Zhary Y. V., Zakurdayev A. D., Poognin V. I. Multiple-beam klystron amplifiers: performance parameters and development trends. IEEE Transactions on Plasma Science, 2004. Vol.32. Pp. 1109‒1118. https://doi.org/10.1109/TPS.2004.828807

10. Ding Y., Zhu Y., Yin X., Sun X., Shen B., Miao Y., Wang C. Research progress on C-band broadband multibeam klystron. IEEE Transactions on Electron Devices, 2007. Vol.54. Pp.624‒630. https://doi.org/10.1109/TED.2007.892354

11. Lau Y. Y., Friedman M., Krall J., Serlin V. Relativistic klystron amplifiers driven by modulated intense relativistic electron beams. IEEE Transactions on Plasma Science, 1990. Vol.18, Pp. 553‒569 . https://doi.org/10.1109/27.55927

12. Serlin V., Friedman M. Development and optimization of the relativistic klystron amplifier. IEEE Transactions on Plasma Science, 1994. Vol.22, Pp. 692‒700. https://doi.org/10.1109/27.338284

13. Levine J. S. , Harteneck B.D. Repetitively pulsed relativistic klystron amplifier. Applied Physics Letters, 1994. Vol.65, Pp. 2133‒2135. https://doi.org/10.1063/1.112813

14. Huang H., Feng D. C., Luo G. Y., Lei L. Y., Chen Zh. G., Liao Y., Tan J., Jin X., Meng F.B. Repetitive operation of an S-band 1-GW relativistic klystron amplifier. IEEE Transactions on Plasma Science, 2007. Vol.35, Pp. 384‒387. https://doi.org/10.1109/TPS.2007.893263

15. Yang F., Dang F., Ge X., He J., Ju J., Zhang X. A compact coaxial relativistic klystron amplifier with three cascaded single-gap bunching cavities for efficient output. Physics of Plasmas, 2022. Vol.29, 093111-1‒7 .https://doi.org/10.1063/5.0109774

16. Benford J. History and future of high power microwaves. IEEE Transactions on Plasma Science, 2024. Vol.52, Pp. 1137‒1144. https://doi.org/10.1109/TPS.2024.3391732

17. Allen M. A., Boyd J. K., Callin R. S., Deruyter H., Eppley K. R., Fant K. S., Fowkes W. R., etc. High-gradient electron accelerator powered by a relativistic klystron. Physical Review Letters, 1989. Vol.63. Pp. 2472‒2475. https://doi.org/10.1103/PhysRevLett.64.2337

18. Wang S., Fukuda S., Lu Z., Nisa Z., Zhou Z., Xiao O., Pei G. Design study and modeling of multi-beam klystron for Circular Electron Positron Collider. Nucl. Instr. Meth. Phys. Res. A, 2022. Vol.1026, 166208-1‒9. https://doi.org/10.1016/j.nima.2021.166208

19. Jang K.-H., Jeon S.-G., Kim J.-I., Won J.-H., So J.-K., Bak S.-H., Srivastava A., Jung S.-S., Park G.-S. High order mode oscillation in a terahertz photonic-band-gap multibeam reflex klystron. Applied Physics Letters, 2008. Vol.93, 211104-1‒3. https://doi.org/10.1063/1.3037026

20. Jang K.-H., Park S. H., Lee K., Park G.-S. , Jeong Y. U. High-order photonic bandgap reflex klystron using carbon nanotube multi-beam cathode. Electronics Letters, 2012. Vol.48. Pp. 707‒708. https://doi.org/10.1049/el.2012.0976

21. Gillespie K. M., Speirs D. C., Ronald K., McConville S. L., Phelps A. D. R., Bingham R., Cross A.W., Robertson C. W., Whyte C. G., He W., Vorgul I., Cairns R. A., Kellett B. J. 3D PiC code simulations for a laboratory experimental investigation of Auroral kilometric radiation mechanisms. Plasma Physics and Controlled Fusion, 2008. Vol.50, 124038-1-11. https://doi.org/10.1088/0741-3335/50/12/124038

22. Higaki H., Sakurai S., Ito K., Okamoto H. Nonneutral electron plasmas confined in a compact magnetic mirror trap. Applied Physics Express, 2012. Vol.5, 106001-1‒3. https://doi.org/10.1143/APEX.5.106001

23. Leopold J. G., Krasik Ya. E., Bliokh Y. P., Schamiloglu E. Producing a magnetized low energy, high electron charge density state using a split cathode. Physics of Plasmas, 2020. Vol.27. 103102-1-9. https://doi.org/10.1063/5.0022115

24. Timofeev I.V., Annenkov V.V., Volchok E. P., Glinskiy V.V. Electron beam–plasma discharge in GDT mirror trap: particle-in-cell simulations. Nuclear Fusion, 2022. Vol. 62, 066033. https://doi.org/10.1088/1741-4326/ac3cdc

25. Dubinov A. E., Tarakanov V. P. Particle-in-cell/Monte Carlo-simulation of the discharge in helium initiated by a relativistic electron beam in the chamber with a magnetic mirror. Contributions to Plasma Physics, 2022. Vol.62, 202100198-1-13. https://doi.org/10.1002/ctpp.202100198

26. Borzenkov D.V., Luksha O. I. Numerical simulation of space-charge dynamics in a gyrotron trap. Technical Physics, 1997. Vol.42, Pp. 1071-1074. https://doi.org/10.1134/1.1258768

27. Ilyakov E. V., Kulagin I. S., Manuilov V. N., Shevchenko A. S. Experiments on the formation of an intense helical electron beam under conditions of picking-up of the electrons reflected from the magnetic mirror. Radiophysics and Quantum Elektronics, 2007. Vol.50, Pp. 713–719. https://doi.org/10.1007/s11141-007-0062-4

28. Fuks M. I. , Schamiloglu E. Application of a magnetic mirror to increase total efficiency in relativistic magnetrons. Physical Review Letters, 2019. Vol.122. 224801-1-6. https://doi.org/10.1103/PhysRevLett.122.224801

29. Dubinov A. E. Features of electron dynamics in a vircator with a magnetic mirror// Journal of Communications Technology and Electronics, 2000. Vol.45, Pp. 792-796. https://elibrary.ru/item.asp?id=14996670

30. Dubinov A. E., Kolesov H. N., Tarakanov V. P. Relativistic multivircator with two magnetic mirrors on underlimit electron beam: concept and PIC-simulation results. IEEE Transactions on Plasma Science, 2022. Vol.50, Pp. 4589-4595. https://doi.org/10.1109/TPS.2022.3214995

31. Garkusha O. V., Zdanovich A. I., Shkol'nikov E.Ya. SVCH-generator na virtual'nom katode v magnitnoj probke [Microwave generator on a virtual cathode in a magnetic plug]. Sb. Nauch. Tr.: Nauchnaya Sessiya MIFI [Sat. Scientific Proceedings: Scientific Session MEPhI], 2001, Vol.7. Pp. 146-147.

32. Berezin YU. A., Vshivkov V. A. Metod chastic v dinamike razrezhennoj plazme [Particle method in rarefied plasma dynamics]. Novosibirsk, Nauka Publ., 1980. 95 p.

33. Bedsel CH., Lengdon A. Fizika plazmy i chislennoe modelirovanie. Moscow, Energoatomizdat Publ., 1989. 452 p.

34. Skjæraasen O., Melatos A., Spitkovsky A. Particle-in cell simulations of a nonlinear transverse electromagnetic wave in a pulsar wind termination shock. Astrophysical Journal, 2005. Vol. 634. Pp. 542‒546. https://doi.org/10.1086/496873

35. Lee S.-Y., Lee† E. ,. Kim K.-H, Seon J., Lee D.-H., Ryu K.-S. Development and test of 2.5-dimensional electromagnetic PIC simulation code. Journal of Astronomy and Space Sciences, 2015. Vol. 32, Pp. 45–50. https://doi.org/10.5140/JASS.2015.32.1.45

36. Rozental R.M., Tai E.M., Tarakanov V.P., Fokin A.P. Using the 2.5-dimensional PIC code for simulating gyrotrons with nonsymmetric operating modes. Radiophysics and Quantum Electronics, 2022. Vol.65. Pp. 384–396. https://doi.org/10.1007/s11141-023-10221-7

37. Tarakanov V.P. User’s Manual for Code KARAT. Springfield, VA: Berkley Research Associates, 1992.

38. Friedman M. ,Ury M. Microsecond duration intense relativistic electron beams. Review of Scientific Instruments, 1972. Vol. 43. Pp. 1659‒1661. https://doi.org/10.1063/1.1685517

39. Donets E. D., Donets E. E., Syresin E. M., Dubinov A. E., Makarov I. V., Sadovoy S. A., Saikov S. K., Tarakanov V. P. Formation of longitudinal nonlinear structures in the electron cloud of an electron-string ion source. Plasma Physics Reports, 2009. Vol.35, Pp. 54-61. https://doi.org/10.1134/S1063780X09010073

40. Dubinov A. E., Tarakanov V. P. PIC simulation of the dynamics of electrons in a conical vircator. IEEE Transactions on Plasma Science, 2016. Vol.44. Pp. 1391-1395. https://doi.org/10.1109/TPS.2016.2580608

41. Dubinov A.E., Tarakanov V.P. PIC simulation of a two-foil vircator. Laser and Particle Beam, 2017. Vol.35. Pp. 362-365. https://doi.org/10.1017/S0263034617000283

42. Ginzburg N.S., Rozental R. M., Sergeev A.S., Fedotov A. E., Zotova I.V., Tarakanov V.P. Generation of rogue waves in gyrotrons operating in the regime of developed turbulence. Physical Review Letters, 2017. Vol. 119, 034801-1-6. https://doi.org/10.1103/PhysRevLett.119.034801

43. Totmeninov E. M., Klimov A. I., Konev V. Yu., Pegel I. V., Rostov V. V., Tsygankov R. V., Tarakanov V. P. Mode selection in an S-band relativistic backward wave oscillator based on a coaxial waveguide. Technical Physics Letters, 2014. Vol.40. Pp. 152-156.

44. https://doi.org/10.1134/S1063785014020278

45. Dubinov A. E., Tarakanov V. P. Simulation of the formation of the squeezed state of an electron beam with a sublimiting beam current in a closed drift tube. Technical Physics, 2020. Vol.65, Pp.1002-1005. https://doi.org/10.1134/S1063784220060080

46. Dubinov A.E. The simulation of a beam-plasma discharge with the beam current exceeding the limiting vacuum current. High Temper.,2004. Vol.42, Pp.675−681. https://doi.org/10.1023/B:HITE.0000046520.56858.b9

47. Barabanov V. N., Dubinov A. E., Loiko M. V., Saikov S. K., Selemir V. D., Tarakanov V. P. Beam discharge excited by distributed virtual cathode. Plasma Physics Reports, 2012. Vol.38, Pp.169-178. https://doi.org/10.1134/S1063780X12010023

48. Kralkina E. A., Nekludova P. A., Nikonov A. M., Vavilin K. V., Zadiriev I. I. Mutual influence of the channels in a combined discharge based on the RF inductive and DC discharges. Vacuum, 2021. Vol. 198, 110873-1-11. https://doi.org/10.1016/j.vacuum.2022.110873

49. Mumtaz S., Lim J. S., Ghimire B., Lee S. W., Choi J.J., Choi E. H. Enhancing the power of high power microwaves by using zone plate and investigations for the position of virtual cathode inside the drift tube. Physics of Plasmas, 2018. Vol.25, 103113-1-9. https://doi.org/10.1063/1.5043595


Review

For citations:


Dubinov A.E., Kolesov H.N. PIC MODEL OF RELATIVISTIC TWO-CAVITY REFLEX KLYSTRON WITH MAGNETIC MIRROR. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(1):3-15. (In Russ.) https://doi.org/10.26583/vestnik.2025.1.1. EDN: BXVVKZ

Views: 134


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)