Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

DEVELOPMENT OF A NON-DISPERSIVE INFRARED GAS ANALYZER FOR MEASURING THE DYNAMICS OF GREENHOUSE GASES CONCENTRATIONS

https://doi.org/10.26583/vestnik.2025.1.2

EDN: CDROBT

Abstract

Monitoring of the greenhouse gases concentrations and their dynamics is a fundamental and crucial task in environmental monitoring. Gases such as water vapor, carbon dioxide, methane, and others enter the atmosphere through both natural processes and anthropogenic activities. The accumulation of these gases enhances the greenhouse effect, negatively impacting human health, agriculture, and the environment as a whole.  Therefore, the development of devices capable of determining atmospheric greenhouse gas concentrations is vital. Optical measurement methods, including nondispersive infrared (NDIR) spectroscopy, offer non-contact and automated measurement of gaseous mixture components. The NDIR gas analyzer presented in this work registers radiation at a wavelength of 4.26 µm to determine carbon dioxide concentration (with provision for water vapor detection). The resulting signal is normalized using a reference channel tuned to 3.95 µm. The mathematical model, developed using MATLAB and Python programming languages, processes the experimental data to determine atmospheric carbon dioxide concentrations. The developed device is an open-path gas analyzer, enabling its use in diverse environments due to its reduced power consumption.  This instrument is applicable for carbon polygon monitoring and for quality control of low-Earth orbit satellites performing atmospheric greenhouse gases monitoring.

About the Authors

I. A. Karpov
Bauman Moscow State Technical University
Russian Federation


I. L. Fufurin
Bauman Moscow State Technical University
Russian Federation


I. B. Vintaykin
Bauman Moscow State Technical University
Russian Federation


D. R. Anfimov
Bauman Moscow State Technical University
Russian Federation


A. P. Kosterova
Bauman Moscow State Technical University
Russian Federation


J. D. Karaulova
bCenter for Applied Physics Bauman MSTU
Russian Federation


P. P. Demkin
Bauman Moscow State Technical University
Russian Federation


A. N. Morozov
Bauman Moscow State Technical University
Russian Federation


References

1. Mikhaylov A., Moiseev N., Aleshin K., Burkhardt T. Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues, 2020, vol. 7, no. 4, pp. 2897-2913. doi: http://doi.org/10.9770/jesi.2020.7.4(21)

2. Zaburaeva Kh.Sh., Kerimov I.A., Romanova O.S., Shirokova V.A. Analiticheskij obzor: prichiny i posledstviya global'nyh izmenenij klimata [Analytical review: causes and consequences of global climate change]. Trudy Instituta geologii Dagestanskogo nauchnogo centra RAN, 2021, no. 4, pp. 103-111. (In Russian). doi: http://doi.org/10.33580/2541-9684-2021-87-4-103-111

3. Kerimov I.A., El'zhaev A.S., Doduev A.A. Geofizicheskie issledovaniya na karbonovom poligone CHechenskoj Respubliki [Geophysical research at the carbon polygon of the Chechen Republic]. Geologiya i Geofizika Yuga Rossii, 2023, vol. 13, no. 3, pp. 49-62. (In Russian). doi: https://doi.org/10.46698/VNC.2023.42.75.004

4. Virolajnen Ya.A. Metodicheskie aspekty opredeleniya soderzhaniya uglekislogo gaza v atmosfere s pomoshch'yu IK-Fur'e-spektroskopii [Methodological aspects of determining the carbon dioxide content in the atmosphere using Fourier transform infrared spectroscopy]. Zhurnal prikladnoj spektroskopii, 2018, vol. 85, no. 3, pp. 453-460. (In Russian).

5. Astashkin A.A., Karelin A.V., Komissarova I.N., Kuz'min Yu.A., Shuvalov V.A., Yakovlev A.A. Obzor orbital'nyh gruppirovok kosmicheskih apparatov operativnogo meteonablyudeniya [Review of orbital constellations of operational weather observation spacecraft].Voprosy elektromekhaniki. Trudy VNIIEM, 2021, vol. 181, no. 2, pp. 24-55. (In Russian).

6. Mayorova V., Morozov, A., Golyak, I., Golyak, I., Lazarev, N., Melnikova, V., Rachkin D., Svirin V., Tenenbaum S., Vintaykin I., Anfimov D., Fufurin I. Determination of greenhouse gas concentrations from the 16U cubesat spacecraft using fourier transform infrared spectroscopy. Sensors, 2023, vol. 23, no. 15, 6794 p. doi: https://doi.org/10.3390/s23156794

7. Petrov D.V., Matrosov I.I., Sedinkin D.O., Zaripov A.R. Opredelenie koncentracii uglekislogo gaza v atmosfernom vozduhe s pomoshch'yu spektroskopii kr [Determination of carbon dioxide concentration in atmospheric air using Raman spectroscopy]. Dvenadcatoe Sibirskoe soveshchanie i shkola molodyh uchenyh po klimato-ekologicheskomu monitoringu, 2017, pp. 225-226. (In Russian).

8. Kim D.V., Zenevich S.G., Gazizov I.SH., Spiridonov M.V., Rodin, A.V. Razrabotka portativnogo gazoanalizatora dlya provedeniya izmerenij potokov CO2, CH4 i H2O metodom turbulentnyh pul'sacij [Development of a portable gas analyzer for measuring CO2, CH4 and H2O flows using the turbulent pulsation method]. Optika atmosfery i okeana. Fizika atmosfery, 2022, pp. B186-B189. (In Russian). doi: http://doi.org/10.56820/OAOPA.2022.25.48.001

9. Mal'cev A.A. Molekulyarnaya spektroskopiya [Molecular spectroscopy]. Izd-vo Moskovskogo universiteta, 1980, 272 p. (In Russian).

10. Dinh T.V., Lee J.Y., Ahn J.W., Kim J.C. Development of a wide-range non-dispersive infrared analyzer for the continuous measurement of CO2 in indoor environments. Atmosphere, 2020, vol. 11, no. 10, 1024 p. doi: https://doi.org/10.3390/atmos11101024

11. Vincent T.A., Gardner J.W. A low cost MEMS based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm levels. Sensors and Actuators B: Chemical, 2016, vol. 236, pp. 954-964. doi: https://doi.org/10.1016/j.snb.2016.04.016

12. Xu M., Xu Y., Tao J., Li Y., Kang Q., Shu D., Li T., Liu Y. A design of an ultra-compact infrared gas sensor for respiratory quotient (qCO2) detection. Sensors and Actuators A: Physical, 2021, vol. 331, 112953 p. doi: https://doi.org/10.1016/j.sna.2021.112953

13. Li Q., He Y., Zhao K., Ji J., Li. H., Bewley J. Development and Testing of NDIR-Based Rapid Greenhouse Gas Detection Device for Dairy Farms. Sustainability, 2024, vol. 16, no. 5, 2131 p. doi: https://doi.org/10.3390/su16052131

14. Fu L., You S., Li G., Fan Z. Enhancing methane sensing with NDIR technology: Current trends and future prospects. Reviews in Analytical Chemistry, 2023, vol. 42, no. 1, 20230062 p. doi: https://doi.org/10.1515/revac-2023-0062

15. Ab Latif F.N.B., Yaacob M. Detection of Methane Gas Using Absorption Spectroscopy Technique in Non-Dispersive Infrared (NDIR) Region. Evolution in Electrical and Electronic Engineering, 2022, vol. 3, no. 2, pp. 25-34. doi: https://doi.org/10.30880/eeee.2022.03.02.004

16. Karacan C.Ö., Ruiz F.A., Cotè M., Phipps S. Coal mine methane: a review` of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. International journal of coal geology, 2011, vol. 86, no. 2-3, pp. 121-156. doi: https://doi.org/10.1016/j.coal.2011.02.009

17. Burba G.G., Kurbatova YU.A., Kuricheva O.A., Avilov V.K., Mamkin V.V. Metod turbulentnyh pul'sacij. Kratkoe prakticheskoe rukovodstvo [Turbulent pulsation method. A short practical guide]. Moskva: IPEE im. AN Severcova RAN, 2016, pp. 11-27. (In Russian).


Review

For citations:


Karpov I.A., Fufurin I.L., Vintaykin I.B., Anfimov D.R., Kosterova A.P., Karaulova J.D., Demkin P.P., Morozov A.N. DEVELOPMENT OF A NON-DISPERSIVE INFRARED GAS ANALYZER FOR MEASURING THE DYNAMICS OF GREENHOUSE GASES CONCENTRATIONS. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(1):16-23. (In Russ.) https://doi.org/10.26583/vestnik.2025.1.2. EDN: CDROBT

Views: 201


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)