Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

INFLUENCE OF SOCIAL CONTACTS ON FORMATION OF ENDEMIC EQUILIBRIUM IN SEIS MODEL

https://doi.org/10.26583/vestnik.2025.3.5

EDN: OQVEDU

Abstract

In the framework of mean-field approximation, the influence of social contacts on the spread of an epidemic in a population of constant size is discussed. This aspect, which seems to be not fully explored yet, is getting increasing attention in mathematical epidemiology. The key point of the proposed model is that it highlights two-infection transfer mechanisms depending on the physical nature of the contact between people. We separate the transfer mechanism related directly to the movement of people (the so-called transport processes) from the one occurring at zero relative speed of persons (the so-called social contacts). Under the framework of the proposed physical chemical analogy, this approach allows us uniformly to come to the description of the rate constants of infection transmission of different nature. The resulting transmission rate constants are used to modify the SEIS model to examine the influence of social activity on the formation of endemic equilibrium in the population under consideration. The frequency of social contacts is estimated with the Dunbar approach and direct statistical calculation based on the binomial distribution. Both methods provide close values, the ones are used to determine the permissible range of values ​for the infection transmission rate constant, employed to establish endemic equilibrium. The necessary conditions for the existence of this equilibrium, depending on both social and medical-biological factors, are also obtained.

About the Authors

A. R. Karimov
National Research Nuclear University MEPhI; Joint Institute of High Temperatures, Russian Academy of Sciences
Russian Federation


M. A. Solomatin
National Research Nuclear University MEPhI
Russian Federation


References

1. Hunter E., Mac Namee B., Kelleher J. An open-data-driven agent-based model to simulate infectious disease outbreaks. PLoS One., 2018. Vol. 13. doi: 10.1371/journal.pone.0208775

2. Wilson N., Corbett S., Tovey E. Airborne transmission of COVID-19. BMJ, 2020. vol. 370. pp. 10–11. doi: 10.1136/bmj.m3206

3. Mossong J., Hens N., Jit M., Beutels P., Auranen K., Mikolajczyk R. et al. Social contacts and mixing patterns relevant to the spread of infectious diseases . PLoS Med., 2008. Vol. 5. (3): e74 doi: 10.1371/journal.pmed.0050074.

4. Slovokhotov Yu. L. Fizika i sociofizika. Ch.2 [Physics and sociophysics. Part 2]. Problemy Upravleniya, 2012. Iss. 2. pp. 2–31. (in Russian)

5. Kolesnichenko A. A. Sravnitel'nyj analiz modelej rasprostraneniya infekcij [Comparative analysis of infection spread models]. Obshchestvo, Obrazovanie, Nauka v Sovremennykh Paradigmakh Razvitiya , 2020. pp. 214–220. (in Russian)

6. Tolles J., Luong T. Modeling epidemics with compartmental models. JAMA, 2020. Vol. 323. pp. 2515–2516. doi:10.1001/jama.2020.8420

7. Tang L., Zhou Y., Wang L., Purkayastha S., Zhang L., He J., Wang F., Song P. X. K. A review of multi-compartment infectious disease models . International Statistical Review, 2020. Vol. 88. pp. 462–513. doi: 10.1111/insr.12402

8. Akimov V. A., Bedilo M. V., Ivanova E. O. Matematicheskie modeli epidemij i pandemij kak istochnikov chrezvychajnyh situacij biologo-social'nogo haraktera [Mathematical models of epidemics and pandemics as sources of biologico-social emergencies]. Tekhnologii Grazhdanskoy Bezopasnosti , 2022. vol. 19, no. 3 (73).pp. 10–14. (in Russian)

9. Avilov K. K., Romanyukha A. A. Matematicheskie modeli rasprostraneniya i kontrolya tuberkuleza [Mathematical models of tuberculosis spread and control]. Matematicheskaya Biologiya i Bioinformatika, 2007. Vol. 2, No. 2. pp. 188–318. (in Russian)

10. Karimov A. R., Stenflo L., Yu M. Y. Dynamics of charged aerosols relevant to transmission of airborne infections . Physica Scripta, 2022. Vol. 97, No. 8. pp. 085007.

11. Karimov A. R., Solomatin M. A. Osobennosti rasprostraneniya aerozol'nyh chastic v tekhnogennyh usloviyah [Features of aerosol particle dispersion under technogenic conditions]. Vestnik NIYaU MIFI, 2024. vol. 13(1). pp. 30–39. doi:10.26583/vestnik.2024.303 (in Russian)

12. Karimov A. R., Solomatin M. A., Bocharov A. N. Influence of transfer epidemiological processes on the formation of endemic equilibria in the extended SEIS model. Mathematics, 2024. Vol. 12, No. 22. pp. 3585. doi:10.3390/math12223585

13. Karimov A. R., Solomatin M. A., Valiullin R. A., Sharafutdinov R. F. Vliyanie skorosti peredachi infekcii na formirovanie endemicheskogo ravnovesiya v rasshirennoj SEIR-modeli [Impact of infection transmission rate on endemic equilibrium formation in an extended SEIR model]. Vestnik Bashkirskogo Universiteta, 2024. Vol. 29, No. 4. pp. 202–212. (in Russian)

14. Popova A. Yu., Zaytseva N. V., Alekseev V. B., Letyushev A. N., Kiryanov D. A., Klein S. V. et al. Neodnorodnost' parametrov modificirovannoj SIR-modeli voln epidemicheskogo processa COVID-19 v Rossijskoj Federacii [Parameter heterogeneity of a modified SIR model for epidemic waves of COVID-19 in the Russian Federation]. Gigiena i Sanitariya, 2023. Vol. 102, No. 8. pp. 740–749. (in Russian)

15. Bratus A. S., Novozhilov A. S., Platonov A. P. Dinamicheskie sistemy i modeli biologii. [Dynamical systems and models in biology]. Moscow, Fizmatlit, 2010. 400 p.

16. Emanuel N. M., Knorre D. G. Kurs himicheskoj kinetiki [The course in chemical kinetics]. Moscow, Vysshaja Shkola, 1984.

17. van Kampen N. G. Stochastic processes in physics and chemistry. Amsterdam, North-Holland, 1992.

18. Azroyants E. A., Shelepin L. A. Nemarkovskie processy i ih prilozheniya [Non-Markovian processes and their applications]. Preprint FIAn.. 1998. No. 58.

19. Vacchini B., Smirne A., Laine E. M., Piilo J., Breuer H. P. Markovianity and non-Markovianity in quantum and classical systems . New Journal of Physics. 2011. Vol. 13, No. 9. pp. 093004.

20. Łuczka J. Non-Markovian stochastic processes: Colored noise . Chaos, 2005. Vol. 15, No. 2. pp. 026107.

21. Di Lauro F., KhudaBukhsh W. R., Kiss I. Z., Kenah E., Jensen M., Rempała G. A. Dynamic survival analysis for non-Markovian epidemic models . Journal of The Royal Society Interface, 2022. vol. 19, no. 191. pp. 20220124.

22. Kudryashov N. A., Chmykhov M., Vigdorowitsch M. An estimative (warning) model for recognition of pandemic nature of virus infections. International Journal of Nonlinear Sciences and Numerical Simulation, 2021. Vol. 24, no. 1. pp. 213–226. doi:10.1515/ijnsns-2020-0154

23. Kudryashov N. A., Chmykhov M. A., Vigdorowitsch M. Analytical features of the SIR model and their applications to COVID-19./ Applied Mathematical Modelling, 2021. Vol. 90. pp. 466–473 doi: 10.1016/j.apm.2020.08.057.

24. Pripachkin D. A., Vysotskiy V. L., Busyka A. K. Vliyanie uslovij modelirovaniya na ocenku skorosti suhogo osazhdeniya aerozol'nyh chastic na sil'no neodnorodnye podstilayushchie poverhnosti [Influence of simulation conditions on estimation of dry deposition velocity of aerosol particles on strongly heterogeneous underlying surfaces]. Izvestiya Rossiiskoi Akademii Nauk. Fizika Atmosfery i Okeana, 2024. vol. 60, no. 2. pp. 173–182. (in Russian)

25. Dunbar R. How many friends does one person need? Dunbar’s number and other evolutionary quirks. Harvard University Press, 2010.

26. Wellman B. Is Dunbar's number up? British Journal of Psychology, 2012. Vol. 103, No. 2.

27. Karimov A. R., Solomatin M. A. Эндемическое равновесие в расширенной SEIR-модели [Endemic equilibrium in an extended SEIR model]. Yadernaya Fizika i Inzhiniring, 2025. Vol. 16, No. 2. pp. 254–258. (in Russian)

28. Lauer S. A., Grantz K. H., Bi Q., Jones F. K., Zheng Q., Meredith H. R., Azman A. S., Reich N. G., Lessler J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Annals of Internal Medicine, 2020. vol. 172. pp. 577–582.

29. Guan W., Zheng-Yi Ni , Yu Hu , et al. Clinical characteristics of coronavirus disease 2019 in China .New England Journal of Medicine, 2020. vol. 382, no. 18. pp. 1708–1720.

30. He X., Lau E. H. Y., Wu P., Deng X., Wang J., Hao X. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature Medicine. 2020. vol. 26, no. 5. pp. 672–675.

31. Tudor-Locke C., Craig C. L., Brown W. J., Clemes S. A., De Cocker K., Giles-Corti B. et al. How many steps/day are enough? For adults .International Journal of Behavioral Nutrition and Physical Activity, 2011. Vol. 8. pp. 1–17.

32. Li Q., Guan X., Wu P. et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England Journal of Medicine, 2020. Vol. 382, No. 13.pp. 1199–1207.

33. Schönrath K., Klein-Szanto A. J., Braunewell K. H. The putative tumor suppressor VILIP-1 counteracts epidermal growth factor-induced epidermal-mesenchymal transition in squamous carcinoma cells. PLoS One, 2012. vol. 7, no. 3. e33116.

34. Read J. M. et al. Social mixing patterns in rural and urban areas of southern China. Proceedings of the Royal Society B: Biological Sciences, 2014. Vol. 281, No. 1785. pp. 20140268.

35. Zhang J. et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science, 2020. Vol. 368, No. 6498. pp. 1481–1486.

36. Budzynski M., Luczkiewicz A., Szmaglinski J. Assessing the risk in urban public transport for epidemiologic factors. Energies, 2021. Vol. 14. pp. 4513.

37. White L. F., Pagano M. A likelihood-based method for real-time estimation of the serial interval and reproductive number of an epidemic. Statistics in Medicine, 2008. Vol. 27, No. 16. pp. 2999–3016.

38. Ferguson N. M. et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College London Report, 2020. vol. 9, no. 1. pp. 1–20.

39. Edmunds W. J. et al. The pre-vaccination epidemiology of measles, mumps and rubella in Europe: Implications for modelling studies. Epidemiology and Infection, 2000. vol. 125, no. 3. pp. 635–650.

40. Ponomaryov R. L., Sudakov V. A., Sivakova T. V., Ententevev A. R., Eskin V. I. Razrabotka modeli rasprostraneniya COVID-19 v gorodskih aglomeraciyah [Development of a model for the spread of COVID-19 in urban agglomerations]. Preprints of IPM im. M. V. Keldysha , 2021. No. 74. 20 p. (in Russian)

41. Slovohotov Yu.L. Fizika i sociofizika. Ch. 3. Kvazifizicheskoe modelirovanie v sociologii i politologii. Nekotorye modeli lingvistiki, demografii i matematicheskoj istorii [Physics and Sociophysics. Part 3. Quasi-Physical Modeling in Sociology and Political Science. Some Models of Linguistics, Demography, and Mathematical History]. Problemy upravleniya, 2012, no. 3, pp. 2 – 34 (in Russian).

42. Lukanina K.I., Budika A.K., Rebrov I.E., Antipova K.G., Malakhov S.N., Shepelev A.D., Grigoriev T.E., Yamshchikov V.A., Chvalun S.N. Effectiveness of personal respiratory protection against SARS-CoV-2 viruses and prospects for its improvement. Russian Nanotechnologies, 2021. Vol. 16, No. 1. pp. 80–102.

43. Ivlev L. S. Atmospheric aerosols / Ed. by I. Agranovski .Aerosols – Science and Technology. Weinheim: Wiley–VCH, 2010. P. 345.

44. Kondratyev K. Y., Ivlev L. S., Krapivin V. F., Varotsos C. A. Programmes of atmospheric aerosol experiments: The history of studies Atmospheric Aerosol Properties: Formation, Processes and Impacts, 2006. pp. 3–60.

45. Piskunov V. N. Dinamika aérozolei [Aerosol Dynamics]. Moscow,Fizmatlit Publ,, 2010. 293 p.

46. Sun C., Zhai Z. The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission. Sustainable Cities and Society, 2020. Vol. 62. P. 102390


Supplementary files

Review

For citations:


Karimov A.R., Solomatin M.A. INFLUENCE OF SOCIAL CONTACTS ON FORMATION OF ENDEMIC EQUILIBRIUM IN SEIS MODEL. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(3):225-239. (In Russ.) https://doi.org/10.26583/vestnik.2025.3.5. EDN: OQVEDU

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)