A TECHNIQUE TO INVESTIGATE THE FISSION GAS RELEASE FROM FUEL RODS
https://doi.org/10.26583/vestnik.2025.2.1
EDN: AHTMZE
Abstract
High-flux research reactor SM was constructed in 1961. This is a vessel-type high-flux reactor with a trap and pressurized water cooling. The reactor design allows achieving high flux of thermal neutrons in the moderating trap located in the core centre with the hard neutron spectrum, the core volume being as small as possible. The priority applications of the SM reactor are energy efficiency, power optimization and nuclear power engineering. The critical technologies that promote these applications are physics and engineering of high-flux research reactors, research reactors operation practice and nuclear fuel cycle, safe management of radioactive waste and spent nuclear fuel. The SM experimental cells and channels are used to irradiate samples of reactor materials under the specified conditions, to investigate into the properties of different materials under irradiation, to produce a wide range of radionuclides and make research into nuclear physics. To justify the safe and reliable operation of new fuels, the amount of irradiation-induced fission gas release out of the containment should be measured. The paper presents RIAR’s methodological approach to obtaining data on the activity and nuclide composition of fission gas when sampling from the sealed region with fuel rods during irradiation.
Keywords
About the Authors
A. L. IzhutovRussian Federation
M. C. Kaplina
Russian Federation
N. K. Kalinina
Russian Federation
N. Yu. Marikhin
Russian Federation
V. S. Moiseev
Russian Federation
O. I. Dreganov
Russian Federation
References
1. Panov E.A. Prakticheskaya gamma-spektrometriya na atomnyh stanciyah [Practical gamma-spectrometry at nuclear power plants]. Moscow, Energoatomizdat Publ., 1990. 75 p. (in Russian).
2. Fertman D.E., Rizin A.I., Stas K.N. Povyshenie dostovernosti izmerenij v radiometrii aerozolej [Increasing the reliability of measurements in aerosol radiometry]. Izmeritel’naya tekhnika, 1996. No. 12. Pp. 23–30 (in Russian).
3. Gavrilov P.M., Kokhomsky A.G., Izmestiev K.M., Seelev I.N., Silaev M.E. Gamma-spektrometricheskij metod kontrolya aktivnosti i nuklidnogo sostava gazoobraznyh radioaktivnyh othodov, obrazuyushchihsya pri ekspluatacii yaderno-energeticheskih ustanovok [Gamma-spectrometric method for monitoring the activity and nuclide composition of gaseous radioactive waste generated during the operation of nuclear power plants]. Izvestiya Tomskogo politekhnicheskogo universiteta, 2007. Vol. 311. No. 2. Pp. 66–69 (in Russian).
4. Gillyarovich E.L., Gryaznov A.N., Inikhov A.G., Kostyleva Yu.G., Mysev I.P., Nikolaev A.M. Sovremennaya praktika obespecheniya kachestva izmerenij ioniziruyushchih izluchenij. Yadernye izmeritel’no-informacionnye tekhnologii [Modern practice of ensuring the quality of ionizing radiation measurements. Nuclear measurement and information technologies]. Moscow, NIC «SNIIP» Publ., 1997. 35 p. (in Russian)
5. Khanbikov R.Z., Mitrofanov I.V., Malkov A.P., Paidulov A.V. Harakteristiki aktivnoj zony i obespechenie trebovanij yadernoj bezopasnosti pri ekspluatacii reaktora SM posle modernizacii / Nauchnyj godovoj otchet AO «GNC NIIAR» (otchet ob osnovnyh issledovatel’skih rabotah, vypolnennyh v 2021 g.) / pod obshchej red. d-ra tekhn. nauk, prof. V.V. Kalygina. [Characteristics of the core and ensuring nuclear safety requirements to the SM reactor operation after refurbishment / RIAR JSC Scientific Annual Report (Report on the Research Work Performed in 2021) / edited by Prof. V.V. Kalygin]. Dimitrovgrad, RIAR JSC Publ., 2022. 86 p. (in Russian).
6. Marikhin N.Yu. Kompleks programmnyh sredstv na baze precizionnogo koda dlya raschyotov nejtronno-fizicheskih parametrov ekspluatacii reaktora SM. Diss. kandidata fiz.-mat. nauk [Software based on precision code for calculating neutronic parameters of the SM reactor operation. PhD Diss.]. Dimitrovgrad, 2011. 135 p. (in Russian).
7. Gomin E.A. Status MCU-4 [Status of MCU-4]. Voprosy atomnoj nauki i tekhniki. Seriya «Fizika yadernyh reaktorov», 2006. Iss. 1. Pp. 6–32 (in Russian).
8. Chirkin V.S. Teplofizicheskie svojstva materialov yadernoj tekhniki [Thermophysical properties of materials of nuclear engineering]. Moscow, ATOMIZDAT Publ., 1968. 484 p. (in Russian).
9. Kaplina M.S., Kalinina N.K., Ilyinykh G.A., et al. [Thermophysical calculation of the irradiation device for irradiat- ing fuel components in the SM-3 reactor]. Sbornik dokladov XXII Mezhdunarodnoj konferencii molodyh specialistov po yadernym energeticheskim ustanovkam, 13–14 aprelya 2022 g., Podol’sk. [Proc. of the XXII International Conference of Young Specialists on Nuclear Power Plants April 13–14, 2022, Podolsk]. Podolsk, AO OKB «GIDROPRESS» Publ., 2022. Pp. 256–263 (in Russian).
10. Skhemy raspada radionuklidov. Energiya i intensivnost’ izlucheniya: publikaciya 38 MKRZ: V 2 ch. V 2 kn. Per. s angl. / pod red. A. A. Moiseeva. [Decay patterns of radionuclides. Energy and radiation intensity: Publication 38 ICRP: 2 Parts. 2 books: Trans. from English / edited by А.А. Моiseev]. Moscow, Energoatomizdat Publ., 1987. (in Russian).
Review
For citations:
Izhutov A.L., Kaplina M.C., Kalinina N.K., Marikhin N.Yu., Moiseev V.S., Dreganov O.I. A TECHNIQUE TO INVESTIGATE THE FISSION GAS RELEASE FROM FUEL RODS. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(2):93-102. (In Russ.) https://doi.org/10.26583/vestnik.2025.2.1. EDN: AHTMZE