ALGORITHM FOR AUTOMATIC CONTROL OF NEUTRON PARAMETERS AND NUCLEAR POWER PLANT EQUIPMENT OF A NUCLEAR POWER PLANT WITH LEAD COOLANT IN START-UP MODES
https://doi.org/10.26583/vestnik.2025.2.7
EDN: JJQHKT
Abstract
As the level of automation of nuclear reactors developed, gradually automatic regulators changed from the level of maintaining individual parameters to group and then to functional-group control. Control algorithms of modern nuclear power plants use functional-group control, which allows to send commands of the common unit level instead of direct commands. Nowadays, design and construction of a new nuclear power plant with lead coolant is underway. To work out the normal operation algorithms and safety algorithms, a simulation system was created that allows installing the developed models of the nuclear power plant (process control object), models of equipment, process equipment on it and combining them in a single interaction environment. This article considers the possibility of using and implementing the control algorithm of a new nuclear power plant with lead coolant, which complements the standard algorithms of the control and protection system for neutron and technological parameters. For this purpose, a pre-prepared model of the reactor plant and models of the CPS equipment were installed on the simulation stand. The models of the control object and the CPS were supplemented with an exchange interface and an algorithm that allows controlling the operating modes of the process equipment at the pre-start and start-up stages of the RP. The result was a developed algorithm that eliminates the direct impact of the RP operator on technological operations during normal operation with the possibility of switching to manual mode when conditions appear that prohibit further operations
About the Authors
S. V. EpifanovRussian Federation
A. O. Tolokonskiy
Russian Federation
References
1. Almasri H. F. Ocenka kachestva regulirovaniya i optimizaciya nastroek avtomaticheskogo regulyatora moshchnosti reaktora VVER-1000. [Quality Assessment of Regulation and Optimization of the Power Automatic Regulator Settings of PWR-1000 Reactor]. Global Nuclear safety, 2016. Iss. 4(21). pp. 61-68. (in Russian).
2. Salman A. E., Kandil M. M., Ateya A. A. E., Roman M. R. Control of the VVER-1000 core power using optimized T-S fuzzy controller based on nonlinear point kinetic model. Progress in Nuclear Energy. 2025. Vol. 180. P. 105560. doi: 10.1016/j.pnucene.2024.105560.
3. Shapovalenko V.V. Realizaciya zamknutogo yadernogo toplivnogo cikla v Rossii [Implementation of the closed nuclear fuel cycle in Russia]. Energeticheskie ustanovki i tekhnologii, 2022. Vol. 8. Iss 1. pp. 38-42. (in Russian).
4. Andrianov A. A., Kuptsov I. S., Osipova T.A. [et al.]. Optimizacionnye modeli dvuhkomponentnoj yadernoj energetiki s teplovymi i bystrymi reaktorami v zamknutom yadernom toplivnom cikle [Optimization models of two-component nuclear power with thermal and fast reactors in a closed nuclear fuel cycle]. Izvestiya vysshih uchebnyh zavedenij. Yadernaya energetika, 2018. iss. 3, pp. 100-112. doi: 10.26583/npe.2018.3.09. (in Russian).
5. Adamov E.O., Kaplienko A.V., Orlov V.V. [et al.]. Bystryj reaktor so svincovym teplonositelem BREST: ot koncepcii k realizacii tekhnologii [Fast reactor with lead coolant BREST: from Concept to Technology Implementation]. Atomnaya energiya, 2020. Vol. 129. Iss. 4. pp. 185-194. (in Russian).
6. Dragunov Yu. G., Lemekhov V.V., Moiseev A.V., Smirnov V.S. [Fast neutron reactor with lead coolant (BREST)]. Problemy mashinostroeniya i avtomatizacii, 2015. no. 3. pp. 97-103. (in Russian).
7. Peretz А. А., Сапар А. Д. [The possibility of implementing a closed nuclear fuel cycle based on BREST-OD-300]. Innovacii v tekhnologiyah i obrazovanii: sbornik statej uchastnikov XI mezhdunarodnoj nauchno-prakticheskoj konferencii, Belovo, 27–28 aprelya 2018 goda. [Collection of articles by participants of the XI International Scientific and Practical Conference “Innovations in technology and education”. Belovo, April 28-29, 2018]. Belovo, KGTU im. T.F. Gorbacheva Publ., 2018. part 1. Pp. 214-216. (in Russian).
8. Epifanov S. V., Kolibas G. V., Tolokonsky A. O. [Features of automatic power controller of RP with lead coolant]. Fiziko-tekhnicheskie intellektual'nye sistemy (FTIS-2023): Sbornik tezisov II Nauchno-prakticheskoj konferencii. Moskva, 07–09 fevralya 2023 goda [Collection of abstracts of the II Scientific and Practical Conference “Physical and technical intellectual systems (FTIS-2023)”. Moscow, February 07-09, 2023]. Tambov, Yulis Publ., 2023. Pp. 23. (in Russian).
9. Balownev A. F., Kusnetsov P. B., Zhirnov A.P., e.a. FACT-BR [FACT-BR]. Patent RF, no. 2021611743, 2021.
10. Korablev A. V. , Trifonov A. A. , Sanarin D. B. , e.a. Programmnyj kompleks raspredelennyh sredstv setevoj obrabotki «KROSS» (PK «KROSS») [Software package of distributed network processing facilities «KROSS» (SP «KROSS»)]. Certificate RF of state registration of the computer program, no. 2021681282, 2021.
Review
For citations:
Epifanov S.V., Tolokonskiy A.O. ALGORITHM FOR AUTOMATIC CONTROL OF NEUTRON PARAMETERS AND NUCLEAR POWER PLANT EQUIPMENT OF A NUCLEAR POWER PLANT WITH LEAD COOLANT IN START-UP MODES. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(2):157-162. (In Russ.) https://doi.org/10.26583/vestnik.2025.2.7. EDN: JJQHKT