GEOMETRIC CORRECTIONS FOR CALCULATING THE PAIR CORRELATION FUNCTION
https://doi.org/10.26583/vestnik.2025.3.9
EDN: VAOPKG
Abstract
The pair correlation function of inhomogeneities in samples is actively studied using small-angle scattering methods. Recently, it has become possible to determine this function from atom probe tomography (APT) data. This work examines the influence of the finite size and shape of a sample on the pair correlation function of inhomogeneities derived from APT data.
In a large cubic sample whose dimensions in all directions significantly exceed the characteristic correlation radius, the number of impurities near the sample boundaries can be considered much smaller than in the bulk. If this assumption is not fulfilled, a geometric factor arises, for which a general expression has been derived. The geometric meaning of this factor is the probability of a specific interpoint distance presence within the sample. For the case in which the sample is an elongated rectangular parallelepiped, an analytical expression for the geometric factor in terms of elementary functions is obtained.
The following model systems were considered: a completely uncorrelated distribution of centers, a simple cubic lattice, and a densely packed system of polydisperse hard spheres. These systems were chosen due to their differing degrees of spatial order. It is shown that accounting for the geometric factor yields the correct pair correlation function for the selected model systems of inhomogeneities.
About the Authors
F. S. DzheparovRussian Federation
D. V. Lvov
Russian Federation
A. N. Tyulyusov
Russian Federation
J. Schmeissner
Russian Federation
References
1. Svergun D.I., Feigin L.A. Rentgenovskoe i nejtronnoe malouglovoe rasseyanie [X-ray and neutron small-angle scattering]. Moscow, Nauka Publ., 1986. 280 p.
2. Dzheparov F.S., Lvov D.V. Nejtronnye issledovaniya kondensirovannyh sred. Uchebnoe posobie. [Neutron studies of condensed matter. Tutorial]. Moscow, NIYaU MIFI Publ., 2012. 188 p. doi: 10.13140/2.1.2640.1608 (in Russian)
3. Abov Yu.G., Dzheparov F.S., Elyutin N.O., Lvov D.V., Tyulyusov A.N. Issledovaniya s primeneniem teplovyh nejtronov [Thermal Neutron Research]. ZhETF, 2013. vol. 143. pp. 507-517. doi: 10.7868/S0044451013030097 (in Russian)
4. Rogozhkin S.V., Aleev A.A., Luk'yanchuk A.A., Shutov A.S., Raznicyn O.A., Kirillov S.E. Prototip atomnogo zonda s lazernym ispareniem [Atomic Probe Prototype with Laser Evaporation]. Pribory i tekhnika eksperimenta, 2017. no. 3. pp. 129-134. doi: 10.7868/S0032816217020227 (in Russian)
5. Luk'yanchuk A.A., Aleev A.A., Shutov A.S., Raznicyn O.A., Kirillov S.E., Rogozhkin S.V. Rekonstrukciya trekhmernyh raspredelenij atomov v metode atomno-zondovoj tomografii s uchetom plotnosti materiala [Reconstruction of three-dimensional distributions of atoms in the atom probe tomography method taking into account the material density]. Yadernaya fizika i inzhiniring, 2022. vol.13. no. 3. pp. 272-279. doi: 10.56304/S2079562922010250. (in Russian)
6. Rogozhkin S.V., Klauz A.V., Ke Y., Almásy L., Nikitin A.A., Khomich A.A., Bogachev A.A., Gorshkova Y.E., Bokuchava G.D., Kopitsa G.P., et al. Study of Precipitates in Oxide Dispersion-Strengthened Steels by SANS TEM, and APT. Nanomaterials, 2024. vol. 14. no. 2. pp.194. doi: 10.3390/nano14020194
7. Bell R.J. Pair Distribution Function for Particles in a Box. Nature, 1968. no. 218. pp. 985-986. doi: 10.1038/218985b0
8. Gavagnin E., Owen J., Yates C. Pair correlation functions for identifying spatial correlation in discrete domains. Physical Review E, 2018. vol. 97. iss. 6. doi: 062104. 10.1103/PhysRevE.97.062104
9. Moody M., Gault B., Stephenson L., Marceau R., Powles R., Ceguerra A., Breen A., Ringer S. Lattice Rectification in Atom Probe Tomography: Toward True Three-Dimensional Atomic Microscopy. Microscopy and Microanalysis, 2011. Vol.17. iss.2. pp.226-239. doi: 10.1017/S1431927610094535.
10. Larsen M.L., Shaw R.A. A method for computing the three-dimensional radial distribution function of cloud particles from holographic images. Atmospheric Measurement Techniques, 2018. vol. 11. iss. 7. pp. 4261–4272. doi: 10.5194/amt-11-4261-2018.
11. Melzer A., Nunomura S., Samsonov D., Ma Z., Goree J. Laser-excited Mach cones in a dusty plasma crystal. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2000. vol. 62. iss. 3. pp. 4162-4176. doi: 62. 4162-76. 10.1103/PhysRevE.62.4162.
12. Gu F., Guiselin B., Bain N. et al. Emergence of collective oscillations in massive human crowds. Nature, 2025. vol. 638. pp. 112–119. doi: 10.1038/s41586-024-08514-6.
13. Jacquemin M., Ribeiro F., Aliane K., Broggio D., Franck D., et al. Using radial distribution functions to calculate cellular crossabsorbed dose for β emitters: comparison with reference methods and application for 18F-FDG cell labeling . Physics in Medicine and Biology, 2021. vol. 66. iss. 17. pp.175016. doi: 10.1088/1361-6560/abe555
14. Theodorou D.N., Suter U.W. Geometrical considerations in model systems with periodic boundaries. Journal of Chemical Physics, 1985. vol. 82. iss.2. pp. 955–966. doi: 10.1063/1.448472
15. Gilbert B. Finite size effects on the real-space pair distribution function of nanoparticles. Journal of Applied Crystallography, 2008. vol. 41. pp. 554–562. doi: 10.1107/S0021889808007905
16. Kodama K., Iikubo S., Taguchi T., Shamoto S. Finite size effects of nanoparticles on the atomic pair distribution functions. Acta Crystallographica Section A, 2006. vol. 62. pp. 444–453. doi: 10.1107/S0108767306034635
17. Dzheparov F.S., Lvov D.V. Nuclear Magnetic Resonance in Gaussian Stochastic Local Field. Applied Magnetic Resonance, 2017. vol. 48. pp. 989–1007. doi: 10.1007/s00723-017-0923-8
18. Abragam A. The Principles of Nuclear Magnetism. Clarendon Press, 1961, 599 p.
Review
For citations:
Dzheparov F.S., Lvov D.V., Tyulyusov A.N., Schmeissner J. GEOMETRIC CORRECTIONS FOR CALCULATING THE PAIR CORRELATION FUNCTION. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(3):264-275. (In Russ.) https://doi.org/10.26583/vestnik.2025.3.9. EDN: VAOPKG