Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Solving a generalized comparison of power expressions using the Lambert W-function

https://doi.org/10.26583/vestnik.2025.4.8

EDN: ZAHGVR

Abstract

Some properties of the new transcendental Lambert W function are presented: the definition of the function, its graph, coordinates of characteristic points, and simple identities. Several examples are given showing how the W function can be used to solve analytically transcendental equations that contain power, logarithmic, and exponential terms. A recently obtained solution of the comparison of two functional expressions of power type  and  is presented, which arises due to the generalization of the comparison of numbers  and . An exact solution of the new generalized comparison of more complex power expressions  and  on sets of positive real numbers  and  for positive values ​​of the exponent α is obtained for the first time. The solution is presented both as an exact formula using the Lambert W  function and using graphs.

About the Author

A. E. Dubinov
Sarov Institute of Physics and Technology – Branch of National Research Nuclear University “MEPhI” (SarFTI–NRNU MEPhI); Russian Federal Nuclear Center – All-Russia Scientific and Research Institute of Experimental Physics (RFNC–VNIIEF)
Russian Federation

AuthorID: 28869



References

1. Niven I. Which is larger, eπ or πe? Two-Year College Mathematics Journal, 1972. vol. 3, no. 2, pp. 13-15. doi:10.1080/00494925.1972.11974209

2. McCartin B. J. e: the master of all . Mathematical Intelligencer, 2006. vol. 28. pp. 10‒21.doi:10.1007/BF02987150

3. Chakraborty B. A visual proof that πe < eπ . Mathematical Intelligencer, 2019. vol. 41. pp.56.doi:10.1007/s00283-018-9816-4

4. Haque N. A visual proof that e <A eA>Ae . Mathematical Intelligencer, 2020. vol. 42. pp.74 doi:10.1007/s00283-019-09964-x

5. Vallejo A., Bove I. Which is greater: eπ or πe? An unorthodox physical solution to a classic puzzle. American Journal of Physics, 2024. vol.92. pp. 397‒398. doi:10.1119/5.0188912

6. Rosendahl J., Gilmore J. Comparing BA and AB for A > B. College Mathematics Journal, 1987. vol.18. pp. 50. doi:10.1080/07468342.1987.11973008

7. Chakraborty B. A visual proof that ba < ab when e ≤ a < b. International Journal of Mathematical Education in Science and Technology,2024. vol.55. pp.1291‒1292. doi:10.1080/0020739X.2022.2102547

8. Haque N., Chakraborty B. Comparing ab and ba via location of zeros. Mathematical Intelligencer, 2025. vol.47. pp. 40–43. doi:10.1007/s00283-024-10342-5

9. Corless R. M., Gonnet G. H., Hare D. E. G., Jeffrey D. J., Knuth D. E. On the Lambert W function. Advances in Computational Mathematics, 1996. vol.5. pp. 329359. doi :10.1007/BF02124750

10. Valluri S. R., Jeffrey D. J., Corless R. M. Some applications of the Lambert W function to physics. Canadian Journal of Physics, 2000. vol.78. pp. 823831. doi: 10.1139/p00-065

11. Dubinova I. D. Primenenie W-funkcii Lamberta v matematicheskih zadachah fiziki plazmy [Application of Lambert W-function in mathematical problems of plasma physics]. Fizika plazmy,2004. vol.30. pp. 937943. (in Russian). doi:10.1134/1.1809403

12. Dubinova I.D. Tochnye yavnye resheniya nekotoryh nelinejnyh differencial'nyh uravnenij [Exact explicit solutions of some nonlinear differential equations]. Differenciayal'nye uravneniya, 2004. vol.40. Pp.11291130. (in Russian). doi:10.1023/B:DIEQ.0000049837.34049.2d

13. Dubinov A. E., Dubinova I. D. How can one solve exactly some problems in plasma theory. Journal of Plasma Physics, 2005. vol.71. pp. 715728. doi:10.1017/S0022377805003788

14. Valluri S. R., Gil M., Jeffrey D.J., Basu S. The Lambert W function and quantum statistics. Journal of Mathematical Physics, 2009. vol.50. Article ID: 102103. doi:.org/10.1063/1.3230482

15. Veberič D. Lambert W function for applications in physics. Computer Physics Communications, 2012. vol.183. рр. 26222628. doi:10.1016/j.cpc.2012.07.008

16. Dence T.P. A brief look into the Lambert W function. Applied Mathematics, 2013. vol.4. pp. 887892. doi:10.4236/am.2013.46122

17. Houari A. Additional applications of the Lambert W function in physics. European Journal of Physics, 2013. vol.34. pp.695702 . doi:10.1088/0143-0807/34/3/695

18. Dubinov A. E. Mathematical tricks for pseudopotentials in the theories of nonlinear waves in plasmas. Physics of Plasmas, 2022. vol.29. Article ID: 020901-1‒19. doi:10.1063/5.0078573

19. Dubinov A.E., Dubinova I. D., Sajkov S.K. W funkciya Lamberta i ee primenenie v matematicheskih zadachah fiziki [Lambert's W function and its application in mathematical problems of physics]. Sarov, RFYAC-VNIIEF Publ., 2006. 159 p.

20. Mező I. The Lambert W function and its generalizations and applications. Boca Raton, FL, CRC Press, Taylor & Francis Group, LLC, 2022. 274 p.

21. Dubinov A. E., Dubinova I.D. Tochnoe znachenie sopryazhennogo toka v elektrolite v diffuzionno-migracionnoj modeli Gurevicha-Harkaca [The exact value of the conjugate current in the electrolyte in the Gurevich-Kharkats diffusion-migration model]. ZHTF, 2004. vol.74, pp.118‒119. (in Russian) doi:10.1134/1.1826201

22. Dubinov A.E., Kitaev I.N. Obobshchennye zakon smeshcheniya Vina i zakon Stefana–Bol'cmana dlya teplovogo izlucheniya, imeyushchego nenulevoj himicheskij potencial [Generalized Wien displacement law and Stefan–Boltzmann law for thermal radiation having non-zero chemical potential]. Opticheskij zhurnal,2018. vol.85, pp.3‒5. (in Russian) doi:10.1364/JOT.85.000314

23. Kitis G., Pagonis V. New expressions for half life, peak maximum temperature activation energy and kinetic order of a thermoluminescence glow peak based on the Lambert W function. Radiation Measurе, 2017. vol.97. pp. 28‒34. doi: 10.1016/j.radmeas.2016.12.013

24. Pagonis V., Kitis G., Chen R. A new analytical equation for the dose response of dosimetric materials, based on the Lambert W function. Journal of Luminescence, 2020. vol.225. Article ID: 117333-1‒7. doi: 10.1016/j.jlumin.2020.117333

25. Fries N., Dreyer M. An analytic solution of capillary rise restrained by gravity. Journal of Colloid and Interface Science, 2008. vol. 320. pp. 259–263. doi:10.1016/j.jcis.2008.01.009

26. Dubinov A.E.‚ Dubinova I.D., Sajkov S.K. Tochnoe reshenie zadachi o rasprostranenii volny goreniya [Exact solution of the problem of combustion wave propagation]. Doklady Akademii nauk, 2004. vol.394. pp. 767‒768. (in Russian) doi: 10.1134/1.1686887

27. Dubinov A.E. Einstein-Smoluchowski-type relations for real gases. Journal of Mathematical Chemistry, 2025. vol.63. pp.1116‒1125. doi: 10.1007/s10910-025-01711-2

28. Dubinov A. E., Dubinova I. D. Tochnoe reshenie dispersionnogo uravneniya Landau dlya kolebanij elektronnoj plazmy [Exact solution of the Landau dispersion equation for electron plasma oscillations]. Pis'ma v ZHTF, 2006. vol.32. pp.71‒74. (in Russian) doi:10.1134/S1063785006010123

29. Alekseev B. V., Dubinov A. E., Dubinova I. D. Analiticheskie i chislennye resheniya obobshchennyh dispersionnyh uravnenij dlya odnomernyh zatuhayushchih kolebanij plazmy [Analytical and Numerical Solutions of Generalized Dispersion Equations for One-Dimensional Damped Plasma Oscillations]. Teplofizika vysokih temperatur, 2005. vol.43. pp.485‒491. (in Russian) doi: 10.1007/s10740-005-0088-2

30. Kudryashov N.A., Chmykhov M.А., Vigdorowitsch M.V. An estimative (warning) model for recognition of pandemic nature of virus infection. International Journal of Nonlinear Sciences and Numerical Simulation, 2023. vol.24.pp.213‒226. doi:10.1515/ijnsns-2020-0154

31. Siewert C. E. An exact analytical solutions of an elementary critical condition. Nuclear Science and Engineering, 1973. vol. 51. Pp. 78. doi:10.13182/NSE73-A23260

32. Barkan A., D’Angelo N., Merlino L. R. Charging of dust grains in a plasma. Physical Review Letters, 1994. vol.73. pp. 30933096. doi: 10.1103/PhysRevLett.73.3093

33. Al'terkop B. A., Dubinova I. D., Dubinov A. E. O strukture zaryazhennogo sloya na granice plazmy s zaryazhennym telom [On the structure of a charged layer at the boundary of a plasma with a charged body]. ZHETF, 2006. vol.129. pp. 197206. (in Russian) doi: 10.1134/S1063776106010201

34. Gordienko V.A., Dubinova I. D., Dubinov A.E. Nelinejnaya teoriya stacionarnyh uedinennyh voln bol'shoj amplitudy v simmetrichnyh nezamagnichennyh e‒e+-plazme i "C" _"60" ^"-" "C" _"60" ^"+" -plazme [Nonlinear Theory of Large-Amplitude Stationary Solitary Waves in Symmetric Unmagnetized e‒e+-Plasma and "C" _"60" ^"-" "C" _"60" ^"+" Plasma]. Fizika plazmy, 2006. vol.32. pp. 987‒993. (in Russian) doi: 10.1134/S1063780X06110043

35. Sastry G. M., Agmon N. The span of one-dimensional multiparticle Brownian motion. Journal of Chemical Physics, 1996. vol.104 . pp. 30223025. doi: 10.1063/1.471069

36. Vedenov A. A., Velikhov E. P., Sagdeev R. Z. Nonlinear oscillations of rarified plasma. Nuclear Fusion, 1961. vol. 1, pp. 82100. doi: 10.1117/12.965080


Review

For citations:


Dubinov A.E. Solving a generalized comparison of power expressions using the Lambert W-function. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(4):357-367. (In Russ.) https://doi.org/10.26583/vestnik.2025.4.8. EDN: ZAHGVR

Views: 72


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)