Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Modeling the atomic structure of iron-magnetite interface

https://doi.org/10.26583/vestnik.2025.5.7

EDN: UXBDWW

Abstract

The paper deals with the modeling of atomic structure of an interface between metallic iron and its oxide Fe3O4 (magnetite). Such boundaries arise, for example, during the formation of an oxide layer on the surfaces of pipes made of ferritic-martensitic steels used for protection against high-temperature corrosion in aggressive oxygen-containing environments, in particular, in liquid lead and lead-bismuth eutectics, which are considered as coolants in advanced fast neutron reactors. Theoretically possible versions of coherent surface conjugation of the crystal lattices of iron and magnetite are considered and the specific surface energies of corresponding interfaces are estimated using various interatomic interaction potentials and first-principles calculations. This made it possible to identify. The obtained results made it possible to identify the atomic structure of the interface between iron and magnetite, select configurations with the minimum energy for each potential used, and determine the most suitable interatomic interaction potential for further studies of the effects of irradiation on the iron-magnetite interface.

About the Authors

N. D. Komarov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Belarus


V. A. Borodin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); National Research Center "Kurchatov Institute"
Russian Federation


References

1. Isaev R.S., Djumaev P.S. Vsaimodeistvie chromovogo pokritiya s obolochkoy TVELa iz stali EP823-SH v diapazone temperatur 420–650 °С. [Interaction of chromium coating with the cladding of a fuel element made of EP823-Sh steel in the temperature range of 420–650 °C ]. Vestnik NIYaU MIFI, 2024. Vol.13. No. 4. Pp. 273-281. (in Russian) doi.org/10.26583/vestnik.2024.354

2. Martinelli L., Jean-Louis C., Fanny B. C. Oxidation of steels in liquid lead bismuth: Oxygen control to achieve efficient corrosion protection. Nuclear Engineering and Design, 2011. Vol. 241. No.. 5. pp. 1288-1294. doi.org/10.1016/j.nucengdes.2010.07.039

3. Chichevatov G.D., Stegailov V.V. Tochechie defecti v shpinelyah FeMe2O4 (Me = Fe, Cr): issledovanie v ramkah metoda DFT+U [Point defects in FeMe2O4 spinels (Me = Fe, Cr): a study using the DFT+U method]. Jour. Exp. Teor. Fiz., 2024. Vol. 166. No. 3. Pp. 347-373. (in Russian) doi.org/10.31857/S0044451024090062

4. Martinelli L., Balbaud-Célérier F. Modelling of the oxide scale formation on Fe-Cr steel during exposure in liquid lead-bismuth eutectic in the 450–600 °C temperature range. Materials and Corrosion, 2011. Vol. 62. Pp. 531-542. doi.org/10.1002/maco.201005871

5. Davenport A. J., Oblonsky L. J., Ryan M. P., Toney M. F. The Structure of the Passive Film That Forms on Iron in Aqueous Environments. Journal of The Electrochemical Society, 2000. Vol. 147. Iss. 6. Pp. 2162-2173. doi.org/10.1149/1.1393502

6. Pentcheva R., Wendler F., Meyerheim H. L., Moritz W., Jedrecy N. and Scheffler M. Jahn-Teller Stabilization of a Polar Metal Oxide Surface: Fe3O4. Physical Review Letters, 2005. 94. 126101. doi.org/10.1103/PhysRevLett.94.126101

7. Forti M.D., Alonso P.R., Gargano P.H., Balbuena P.B., Rubiolo G.H. A DFT study of atomic structure and adhesion at the Fe (BCC)/Fe3O4 interfaces. Surface Science, 2016.Vol. 647. Pp. 55-65. doi.org/10.1016/j.susc.2015.12.013

8. Forti M.D., Alonso P.R., Gargano P.H., Rubiolo G.H. Adhesion Energy of the Fe(BCC)/Magnetite Interface within the DFT Approach. Procedia Materials Science, 2015. Vol. 8. Pp. 1066-1072. doi.org/10.1016/j.mspro.2015.04.169

9. Rowan A., Patterson C., Gasparov L. Hybrid density functional theory applied to magnetite: Crystal structure, charge order, and phonons. Physical Review B, 2009. Vol.79. Pp. 1–18. doi.org/10.1103/PhysRevB.79.205103

10. Zhang Z., Satpathy S. Electron states, magnetism, and the Verwey transition in magnetite. Physical Review B, 1991. Vol. 44. Pp. 13319–13331.doi.org/10.1103/PhysRevB.44.13319

11. Koch W., Holthausen M.C. A Chemist’s Guide to Density Functional Theory. 2nd Ed. Wiley-WCH, Weinheim, 2001. 293 p. doi.org/10.1002/3527600043

12. Aryanpour M., van Duin A.C.T., Kubicki J.D. Development of a Reactive Force Field for Iron−Oxyhydroxide System. The Journal of Physical Chemistry A, 2010. Vol. 114. Iss. 21. Pp. 6298–6307. doi/10.1021/jp101332k

13. Pitman M.C.,van Duin A.C.T. Dynamics of Confined Reactive Water in Smectite Clay–Zeolite Composites. Journal of the American Chemical Society, 2012. Vol. 134. No. 6. Pp. 3042–3053. doi.org/10.1021/ja208894m

14. Shin Y.K., Kwak H., Vasenkov A.V., Sengupta D., van Duin A.C.T. Development of a ReaxFF Reactive Force Field for Fe/Cr/O/S and Application to Oxidation of Butane over a Pyrite-Covered Cr2O3 Catalyst. ACS Catal, 2015. Vol. 5(12). Pp. 7226–7236. doi.org/10.1021/acscatal.5b01766

15. Ziegler J.F., Biersack J.P., Littmark U. The stopping and range of ions in solids. New York, Pergamon, 1985. 321 p.

16. Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 1995. Vol. 117. Iss. 1. Pp. 1–19. doi.org/10.1006/jcph.1995.1039

17. Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999. V. 59. P. 1758. doi.org/10.1103/PhysRevB.59.1758

18. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Physical Review B, 1996. Vol. 77. Pp. 3865. doi.org/10.1103/PhysRevLett.77.3865

19. Monkhorst H.J., Pack J.D. Special points for Brillouin zone integrations Physical Review B, 1976. Vol. 13. Pp. 5188 – 5192. doi.org/10.1103/PhysRevB.13.5188

20. Hirel P. Atomsk: A tool for manipulating and converting atomic data files. Computer Physics Communications, 2015. Vol. 197. Pp. 212–219. doi.org/10.1016/j.cpc.2015.07.012

21. Wechsler B.A., Lindsley D.H., Prewitt C.T. Crystal structure and cation distribution in titanomagnetites (Fe3-xTixO4). American Mineralogist, 1984. Vol. 69. Iss. 7-8. Pp. 754–770.

22. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2010. Vol.18, Iss.1, . Article id. 015012. doi.org/10.1088/0965-0393/18/1/015012


Supplementary files

Review

For citations:


Komarov N.D., Borodin V.A. Modeling the atomic structure of iron-magnetite interface. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(5):440-451. (In Russ.) https://doi.org/10.26583/vestnik.2025.5.7. EDN: UXBDWW

Views: 26


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)