Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Shear waves in a nonlinear viscoelastic cylindrical shell

https://doi.org/10.26583/vestnik.2025.5.1

EDN: BPCIKB

Abstract

The propagation of a beam of shear waves along the generatrix of a nonlinear viscoelastic cylindrical shell of the Sanders–Koiter model is simulated by asymptotic integration methods. It is assumed that the shell is made of a material characterized by a cubic dependence between stress and strain intensities, the dimensionless parameters of wall thinness and physical nonlinearity are quantities of the same order of smallness, and the ratio of viscoelastic constants is a dimensionless parameter of a higher order of smallness. A variation of the multiscale expansion method is used, which makes it possible to determine the wave propagation velocity from the linear approximation equations and, in the first essentially nonlinear approximation, to obtain a resolving nonlinear quasi-hyperbolic equation for the leading term of the expansion of the shear component of the displacement. The derived equation is a cubic nonlinear modification of the dispersionless Kadomtsev–Petviashvili–Burgers equation, being a special case of the modified Khokhlov–Zabolotskaya–Kuznetsov equation. The solution of the derived equation is sought in the form of one harmonic with a slowly changing complex amplitude, since in deformable media with cubic nonlinearity the effect of wave self-action significantly prevails over the effect of higher harmonic generation. As a result, the Ginzburg-Landau equation is obtained for the complex amplitude, for which an exact physically consistent solution is constructed.

About the Authors

A. I. Zemlyanukhin
Yuri Gagarin State Technical University of Saratov
Russian Federation


A. V. Bochkarev
Yuri Gagarin State Technical University of Saratov
Russian Federation


N. A. Artamonov
Yuri Gagarin State Technical University of Saratov
Russian Federation


References

1. Rudenko O., Sarvazyan A. Volnovaya biomekhanika skeletnoj myshcy [Wave biomechanics of skeletal muscle]. Akusticheskij zhurnal. 2006. Vol.52. № 6. Pp. 833–846. (in Russian)

2. Rudenko O. V. Nelinejnye volny: nekotorye biomedicinskie prilozheniya [Nonlinear waves: some biomedical applications]. Uspekhi fizicheskih nauk, 2007, Vol. 177. № 4. Pp. 374–383. (in Russian)

3. Sarvazyan A. P., Rudenko O. V., Swanson S. D., Fowlkes J. B., Emelianov S. Y. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound in medicine & biology. 1998. Vol. 24(9), Pp. 1419–1435.

4. R´enier M., Gennisson J. -L., Tanter M., Catheline S., Barri`ere C., Royer D., Fink M. Nonlinear shear elastic moduli in quasi-incompressible soft solids. Proceedings of the IEEE Ultrasonics Symposium, 2007. Pp. 554–557.

5. Gennisson J. -L. New parameters in shear wave elastography in vivo. M´ecanique pour le vivant. Identification et mod´elisation du comportement des tissus biologiques humains et animaux. Avanc´ees et perspectives. Colloque National, du 18 au 22 janvier 2016. Available at: https://mecamat.ensma.fr/Aussois/2016/DOCUMENT/TexteGenisson.pdf (accessed 22.05.2025)

6. Andreev V., Dmitriev V., Pishchalnikov Yu., Rudenko O., Sapozhnikov O., Sarvazyan A. Nablyudenie sdvigovoj volny, vozbuzhdennojs pomoshch'yu fokusirovannogo ul'trazvuka v rezinopodobnoj srede [Observation of shear waves excited by focused ultrasound in a rubber-like medium]. Akusticheskij zhurnal, 1997. Vol. 43. iss. 2. Pp. 149–155 (in Russian)

7. Cormack J. M., Hamilton M. F. Plane nonlinear shear waves in relaxing media. The Journal of the Acoustical Society of America. 2018. Vol. 143(2), Pp. 1035–1048.

8. Lindley B. S. Linear and nonlinear shear wave propagation in viscoelastic media. University of North Carolina: Chapel Hill, 2008. 78 p. https://cdr.lib.unc.edu/downloads/z029p543p

9. Rajagopal K. R., Saccomandi G. Shear waves in a class of nonlinear viscoelastic solids. The Quarterly Journal of Mechanics and Applied Mathematics, 2003. Vol. 56. iss.2. Pp. 311–326. doi: 10.1093/qjmam/56.2.311

10. Wochner M. S., Hamilton M. F., Ilinskii Y. A., Zabolotskaya E. A. Cubic nonlinearity in shear wave beams with different polarizations. Journal of the Acoustical Society of America, 2008. Vol. 123. iss.5. Рp. 2488–2495. doi:10.1121/1.2890739

11. Destrade M., Saccomandi G. Solitary and compact-like shear waves in the bulk of solids // Physical Review E., 2006. Vol. 73. iss. 6, art. 065604. doi: 10.1103/PhysRevE.73.065604

12. Banerjee D., Janaki M. S., Chakrabarti N., Chaudhuri M. Nonlinear shear wave in a non Newtonian visco-elastic medium. Physics of Plasma, 2012. Vol. 19. Iss.6. art. 062301 .

13. Destrade M., Goriely A., Saccomandi G. Scalar evolution equations for shear waves in incompressible solids: A simple derivation of the Z, ZK, KZK, and KP equations. Proceedings of the Royal Society A, 2011. Vol. 467. Pp. 1823–1834.

14. Doronin A. M., Erofeev V. I. Generaciya vtoroj garmoniki sdvigovoj volny v uprugo-plasticheskoj srede [A generation of second harmonic of shear wave in elastoplastic media]. Pis'ma o materialah, 2016, Vol. 6. iss. 2. Pр. 102–104. doi: 10.22226/2410-3535-2016-2-102-104 (in Russian)

15. Shuvalov A. L., Poncelet O., Kiselev A. P. Shear horizontal waves in transversely inhomogeneous plates. Wave Motion. 2008, V. 45. No.5. Pp. 605–615.

16. Erofeev V. I. Rasprostranenie nelinejnyh sdvigovyh voln v tverdom tele s mikrostrukturoj [Propagation of nonlinear shear waves in a solid with microstructure]. Prikladnaya mekhanika, 1993.Vol. 29. No. 4. Pp. 18–22. (in Russian)

17. Erofeev V. I., Raskin I. G. O rasprostranenii sdvigovyh voln v nelinejno-uprugom tele [Propagation of sound shear waves in the nonlinear elastic solids]. Prikladnaya mekhanika,1991, Vol. 27. No.1. Pp. 127–129. (in Russian)

18. Potapov A. I., Soldatov I. N. Kvaziopticheskoe priblizhenie dlya puchka sdvigovyh voln v nasledstvennoj srede. [Quasi-optical approximation for a beam of shear waves in a nonlinear medium with memory]. Prikladnaya mekhanika i tekhnicheskaya fizika,1986. no.1. Pp. 144–147. (In Russian)

19. Kivshar Yu. S., Syrkin E. S. Sdvigovye solitony v uprugoj plastine [Shear solitons in an elastic plate]. Akusticheskij zhurnal, 1991. Vol. 37(1), Pp. 104–109. (in Russian)

20. Erofeev V. I., Sheshenima O. A. Nelinejnye prodol'nye i sdvigovye stacionarnye volny deformacii v gradientno-uprugoj srede [Nonlinear longitudinal and shear stationary deformation waves in a gradient-elastic medium]. Matematicheskoe modelirovanie system i protsessov, 2007. No. 15. Pp. 15–27. (In Russian)

21. Erofeev V. I., Kolesov D. A., Sandalov V. M. Demodulyaciya sdvigovoj volny v nelinejnoj plastine, lezhashchej na uprugom osnovanii, parametry kotorogo izmenyayutsya po zakonu begushchej volny [Demodulation of a shear wave in a nonlinear plate lying on an elastic base, the parameters of which vary according to the law of traveling waves]. Problemy prochnosti i plastichnosti, 2013, Vol. 75(4), Pp. 268–272. (In Russian)

22. Bogdanov A. N., Skvortsov A. T. Nelinejnye sdvigovye volny v zernistoj srede [Nonlinear shear waves in granular medium]. Akusticheskij zhurnal, 1992, Vol. 38. No.3. pp. 408–412. (In Russian)

23. Bykov V. G. Uedinennye sdvigovye volny v zernistoj srede [Solitary shear waves in a granular medium]. Akusticheskij zhurnal,1999, Vol. 45. No. 2. Pp. 169–173. (In Russian)

24. Erofeev V. I., Sharabanova A. V. Sdvigovye volny Rimana v materiale, svojstva kotorogo zavisyat ot vida napryazhennogo sostoyaniya [Riemann shear waves in a material whose properties depend on the type of stress state]. Problemy mashinostroeniya i nadejnosti mashin. 2004, no.1. Pp. 20–23. (In Russian)

25. Erofeev V. I., Kajaev V. V., Semerikova N. P. Volny v sterzhnyah. Dispersiya. Dissipaciya. Nelinejnost'.[Waves in rods. Dispersion. Dissipation. Nonlinearity]. Moscow, Fizmatlit Publ., 2002. 208 p.

26. Kaplunov J. D., Kossovich L. Yu., Nolde E. V. Dynamics of thin walled elastic bodies. San Diego, Academic Press, 1998. 226 p.

27. Zemlyanukhin A. I., Bochkarev A. V., Mogilevich L. I., Andrianov I. V. The generalized Schamel equation in nonlinear wave dynamics of cylindrical shells. Nonlinear Dynamics, 2019. Vol. 98, no.1. Pp. 185–194.

28. Zemlyanukhin A. I., Bochkarev A. V., Andrianov I. V., Erofeev V. I. The Schamel-Ostrovsky equation in nonlinear wave dynamics of cylindrical shells. Journal of Sound and Vibration, 2021.Vol. 491. art. 115752. doi: 10.1016/j.jsv.2020.115752

29. Zemlyanukhin A. I., Bochkarev A. V., Artamonov N. A. Physically admissible and inadmissible exact localized solutions in problems of nonlinear wave dynamics of cylindrical shells. Russian Journal of Nonlinear Dynamics. 2024. Vol. 20. No.2. Pp. 219–229.

30. Zemlyanukhin A. I., Bochkarev A. V. Osesimmetrichnye nelinejnye modulirovannye volny v cilindricheskoj obolochke [Axisymmetric nonlinear modulated waves in a cylindrical shell]. Akusticheskij zhurnal, 2018, Vol. 64(4). Pp. 417–423. (In Russian)

31. Yamaki N. Elastic stability of circular cylindrical shells. North-Holland Series in Applied Mathematics and Mechanics. Vol. 27. Amsterdam, North-Holland, 1984.

32. Amabili M. A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach. Journal of Sound and Vibration, 2003. Vol. 264. No. 5. Pp. 1091–1125.

33. Lukash P. A. Osnovy nelinejnoj stroitel'noj mekhaniki [Fundamentals of nonlinear structural mechanics]. Moscow, Stroyizdat Publ., 1978. 204 p. (In Russian).

34. Volmir A. Nelinejnaya dinamika plastinok i obolochek [The nonlinear dynamics of plates and shells]. Мoscow, Nauka Publ., 1972. 432 p.

35. Moskvitin V. V. Soprotivlenie vyazko – uprugih materialov [Resistance of viscoelastic materials]. Мoscow, Nauka Publ., 1972. 328 p. (In Russian).

36. Potapov A. I. Nelinejnye volny deformacii v sterzhnyah i plastinah [Nonlinear strain waves in rods and plates]. Gorkiy, Publ. of Gorkiy State Univ., 1985. 108 p. (In Russian).

37. Zemlyanukhin A. I., Bochkarev A. V., Artamonov N. A. Sdvigovye volny v nelinejno-uprugoj cilindricheskoj obolochke. [Shear waves in a nonlinear elastic cylindrical shell]. // Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, 2024. Vol. 24(4). pp. 578–586. (In Russian).

38. Rudenko O. V. K 40-letiyu uravneniya Hohlova–Zabolotskoj [The 40th anniversary of the Khokhlov-Zabolotskaya equation]. Akusticheskij zhurnal, 2010. Vol. 56. Pp. 457–466. (In Russian).

39. Rudenko O. V., Sukhorukov A. A. Difragiruyushchie puchki v kubichno – nelinejnyh sredah bez dispersii [Diffracting beams in nondispersive media with cubic profile]. Akusticheskij zhurnal, 1995. Vol. 41(5). pp.725–730. (In Russian).

40. Porubov A. V., Velarde M. G. Exact periodic solutions of the complex Ginzburg–Landau equation. Journal of Mathematical Physics, 1999. Vol. 40. Pp. 884–896.


Supplementary files

Review

For citations:


Zemlyanukhin A.I., Bochkarev A.V., Artamonov N.A. Shear waves in a nonlinear viscoelastic cylindrical shell. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(5):379-392. (In Russ.) https://doi.org/10.26583/vestnik.2025.5.1. EDN: BPCIKB

Views: 36


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)