Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Investigation of self-organization processes in bacterial colonies described by the Chavi-Waddy-Kolokolnikov model equation

https://doi.org/10.26583/vestnik.2025.4.4

EDN: MJQWIL

Abstract

The generalized Chavi-Waddy-Kolokolnikov model used to describe the spatial and temporal dynamics of bacterial colonies is studied, taking into account possible “dispersion” – the mechanism responsible for migration and redistribution of the population in the environment. From a biological point of view, the model allows us to understand how bacterial cells, capable of collective movement, form ordered structures (e.g., clusters or waves) even in the presence of external disturbances. The main focus of the work is on the study of the dynamics of the bacterial colony system described by the generalized Chavi-Wadi-Kolokolnikov model. Thus, a numerical algorithm for mathematical modeling of these processes has been developed and its verification has been carried out on the basis of exact solutions of the model in the form of solitary waves. The influence of the problem parameters on the behavior of the bacterial colony system was investigated. In addition, the main attention in the work is paid to the study of bacterial self-organization processes, as well as to the classification of the dynamics of the system behavior for different values of the parameters of the problem under consideration.

About the Authors

A. G. Golovkov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


P. N. Ryabov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


N. A. Kudryashov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


References

1. Keller E.F, Segel Lee A. Traveling bands of chemotactic bacteria: a theoretical analysis. Journal of theoretical biology, 1971. vol. 30(2). pp. 235– 248.

2. Keller E.F, Segel Lee A. Initiation of slime mold aggregation viewed as an instability. Journal of theoretical biology,1970. vol.26(3). pp. 399–415.

3. Keller E.F, Segel Lee A. Model for chemotaxis. Journal of theoretical biology, 1971. vol. 30(2). pp. 225–234.

4. Horstmann D. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. Jahresbericht der Deutschen Mathematiker-Vereinigung , 2003. vol. 105(3). pp. 103-165.

5. Liu P. Shi J., Wang Z-A. Pattern formation of the attraction- repulsion Keller-Segel system. Discrete and Continuous Dynamical Systems - Series B ,2013. vol. 18. no.10. pp. 2597–2625.

6. Painter K. J., Hillen T. Volume-filling and quorum-sensing in models for chemosensitive movement. Canadian Applied Mathematics Quarterly journal, 2002. vol. 10. no.4. pp. 501–543.

7. Chavanis P-H. A stochastic Keller–Segel model of chemotaxis. Communications in Nonlinear Science and Numerical Simulation, 2010. vol.15. no.1. pp. 60–70.

8. Negreanu M., Tello J.I. Global existence and asymptotic behavior of solutions to a predator–prey chemotaxis system with two chemicals. Journal of Mathematical Analysis and Applications, 2019. vol. 474. no.2. pp.1116–1131.

9. Xiang T. Sub-logistic source can prevent blow-up in the 2D minimal Keller-Segel chemotaxis system.Journal of Mathematical Physics, 2018. vol.59. iss.8. doi: 10.1063/1.5018861

10. Mar´ee A.F. M., Panfilov A.V., Hogeweg P. Phototaxis during the slug stage of Dictyostelium discoideum: a model study. Proceedings of the Royal Society of London. Series B: Biological Sciences, 1999. vol. 266. iss.1426. pp. 1351–1360. doi: 10.1098/rspb.1999.0787

11. Giometto A., Altermatt F., Maritan A., Stocker R., Rinaldo A. Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis. Proceedings of the National Academy of Sciences, 2015. vol. 112. iss. 22. pp. 7045–7050. doi: 10.1073/pnas.1422922112

12. Williams C.R., Bees M.A. Photo-gyrotactic bioconvection. Journal of fluid mechanics, 2011. vol. 678. pp. 41–86. doi:10.1017/jfm.2011.100

13. Levy D., Requeijo T. Modeling group dynamics of phototaxis: From particle systems to PDEs. Discrete and Continuous Dynamical Systems Series B, 2008. vol.9. iss.1. pp.103-128. doi: 10.3934/dcdsb.2008.9.103

14. Galante A., Levy D. Modeling selective local interactions with memory. Physica D, 2013. vol. 260. pp.176–190. doi: 10.1016/j.physd.2012.10.010.

15. Weinberg D., Levy D. Modeling selective local interactions with memory: Motion on a 2D lattice. Physica D, 2014. vol.278-279. pp.13–30. doi: 10.1016/j.physd.2014.04.001

16. Burriesci M., Bhaya D. Tracking phototactic responses and modeling motility of Synechocystis sp. strain PCC6803. Journal of Photochemistry and Photobiology B: Biology, 2008. vol. 91. iss. 2-3. pp. 77–86. doi: 10.1016/j.jphotobiol.2008.01.012

17. Bhaya D. Light matters: phototaxis and signal transduction in unicellular cyanobacteria. Molecular mi-crobiology, 2004. vol.53. iss.3. pp. 745–754. doi: 10.1111/j.1365-2958.2004.04160.x

18. Chavy-Waddy P.-Ch., Kolokolnikov Th. A local PDE model of aggregation formation in bacteri-al colonies. Nonlinearity, 2016. vol.29. iss.10. pp. 3174. doi: 10.1088/0951-7715/29/10/3174

19. Kudryashov N.A., Kutukov A.A., Lavrova S.F. Properties of the generalized Chavy-Waddy–Kolokolnikov model for description of bacterial colonies. Communications in Nonlinear Science and Nu-merical Simulation, 2024. vol.128. pp.107645. doi:10.1016/j.cnsns.2023.107645

20. Kudryashov N.A., Ryabov P. N., Petrov B. A. Dissipative structures of the Kuramoto–Sivashinsky equation. Automatic Control and Computer Sciences, 2015. vol.49. iss.7. pp.508–513. doi: 10.3103/S0146411615070147

21. Kudryashov N.A., Lavrova S. F. Painlev´e Test, Phase Plane Analysis and Analytical Solutions of the Chavy–Waddy–Kolokolnikov Model for the Description of Bacterial Colonies. Mathematics, 2023. vol. 11(14). pp. 3203. doi: 10.3390/math11143203

22. Leo´n-Ram´ırez A., Gonza´lez-Gaxiola O., Chaco´n- Acosta G. Analytical solutions to the Chavy-Waddy–Kolokolnikov model of bacterial aggregates in phototaxis by three integration schemes. Mathematics, 2023. vol.11. iss.10. pp. 2352. doi:10.3390/math11102352

23. Kudryashov N.A., Ryabov P. N., Fedyanin T.E., Kutukov A.A. Evolution of pattern formation under ion bombardment of substrate . Physics Letters A, 2013. vol.377. pp.753–759. doi:10.1016/j.physleta.2013.01.007


Review

For citations:


Golovkov A.G., Ryabov P.N., Kudryashov N.A. Investigation of self-organization processes in bacterial colonies described by the Chavi-Waddy-Kolokolnikov model equation. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(4):318-331. (In Russ.) https://doi.org/10.26583/vestnik.2025.4.4. EDN: MJQWIL

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)