Application of mathematical modeling and digital technologies for optimizing dental implantation planning
https://doi.org/10.26583/vestnik.2025.5.3
EDN: GVVRDE
Abstract
This work presents a numerical study of the stress-strain state of the human maxilla under masticatory load with different dental implantation options. The finite element method was used to obtain the results. The geometric model is constructed using real сomputed tomography scans of a patient with dental implants. It is shown that as the number of implants increases, in the range from 4 to 8, the magnitude of mechanical stress on the bone monotonically decreases. This finding allows us to state that the option with the largest number of implants is the safest in terms of operation. It has been shown that increasing the size of the implant reduces the amount of mechanical stress on both bones and implants. The influence of different angles of posterior implant placement is demonstrated. The conclusions obtained in the article are independent of the mechanical properties of the bone set in the model, under the approximation of an isotropic and homogeneous jaw material in an elastic formulation.
About the Authors
K. D. SavinRussian Federation
A. V. Khrestin
Russian Federation
T. V. Brailovskaya
Russian Federation
P. N. Ryabov
Russian Federation
References
1. Brunski J. Biomechanical aspects of the optimal number of implants to carry a cross-arch full restoration. European Journal of Oral Implantology, 2014. No.7(2) . Pp. 111–131.
2. Hlusov I.A., Pichugin V.F., Surmeneva M.A., Surmenev R.A. Osnovy biomekhaniki biosovmestimyh materialov i biologicheskih tkanej: uchebnoe posobie [Fundamentals of Biomechanics of Biocompatible Materials and Biological Tissues: A Textbook]. Tomsk. TPU Publ., 2023. 163 p.
3. Olson S.A. Designing a biomechanics investigation: choosing the right model. J Orthop Trauma, 2012 Dec. no. 26(12). Рp. 672–677. Doi: 10.1097/BOT.0b013e3182724605
4. Abrosimov V.G. Mekhanicheskie svojstva kostej, nekotorye osobennosti obmena metallov s biologicheskoj sredoj, analiz konstruktivnyh osobennostej implantov [Mechanical properties of bones, some features of metal exchange with the biological environment, analysis of the design features of implants ]. Voprosy rekonstruktivnoj i plasticheskoj hirurgii, 2008. No. 3(26). pp. 32–40. (in Russian)
5. Avrunin A.S. Mekhanizm zhestkosti i prochnosti kosti v norme i pri starenii organizma. Nanourovnevaya model' [Mechanisms of bone stiffness and strength in normal and aging organisms. A nanoscale model]. Genij Ortopedii, 2008. No. 3. pp. 59–66. (in Russian)
6. Akulich YU.V. Biomekhanika adaptacionnyh processov v kostnoj tkani nizhnej konechnosti cheloveka. avtoref. Diss. dokt. fiz.-mat. nauk [Biomechanics of adaptation processes in the bone tissue of the human lower limb. Abs. Dr.phys.-math.sci.Diss]. Saratov, 2011. 37 p.
7. Fedorova N.V. Opredelenie napryazhenno-deformirovannogo sostoyaniya kontaktiruyushchih tel i modelirovanie ih hrupkogo razrusheniya: avtoref. dis. kand. tekh. nauk [Determination of the stress-strain state of contacting bodies and modeling their brittle fracture. Abs.. cand. techn. sci. Diss.]. Novosibirsk, 2020. 20 p.
8. Perel'muter M.N. Issledovanie napryazhenno-deformirovannogo sostoyaniya stomatologicheskih implantatov metodom granichnyh integral'nyh uravnenij [Study of the stress-strain state of dental implants using the boundary integral equation method ]. Vestnik PNIPU. Mekhanika, 2018. No.2. pp. 83-95. (in Russian)
Review
For citations:
Savin K.D., Khrestin A.V., Brailovskaya T.V., Ryabov P.N. Application of mathematical modeling and digital technologies for optimizing dental implantation planning. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(5):402-413. (In Russ.) https://doi.org/10.26583/vestnik.2025.5.3. EDN: GVVRDE
 
                     
         
             
  Email this article
            Email this article