Determining Method for Lighting Characteristics LEDs
https://doi.org/10.26583/vestnik.2025.5.6
EDN: SUKDFZ
Abstract
The article presents a technique for analyzing the lighting characteristics of light-emitting diodes (hereinafter referred to as LEDs), which are represented by a wide range of materials of the AIIIBV group, with or without quantum wells, based on heterostructures or using a single-crystal material. This technique is intended for analyzing and rejecting LEDs, determining their individual proportionality coefficients, which allow for a targeted study of degradation processes in LEDs caused by various destructive effects. It is shown that characteristic regions of the operating current flow are distinguished on the L-I characteristic: the region of low currents LC, the region of the ohmic resistance of the LED - R region, the region of high currents HC, which are characterized by their own proportionality coefficients and have their own physical meaning. Physical and mathematical relationships are determined that describe the change in the output radiation power with an increase in the forward current for LEDs made of the listed materials. The application of this technique with a quantitative assessment of radiation power losses for a selected LED type in the LC and HC regions is shown. The dependence of the LED radiation power losses in the HC region on the operating current is shown. The presented method for assessing the lighting characteristics of LEDs is relevant in the case of exposure to special factors (ionizing radiation, long-term operation, electric fields, etc.), where losses in radiation power will be caused by the induced introduction of non-radiative recombination centers.
About the Authors
K. N. OrlovaRussian Federation
A. V. Gradoboev
Russian Federation
A. V. Beklemisheva
Russian Federation
A. R. Avanesyan
Russian Federation
References
1. Hajrulin B. D. Obzor osnovnogo svetotekhnicheskogo oborudovaniya na aerodromah [Overview of the main lighting equipment at airfields]. Molodezh' i sistemnaya modernizaciya strany, 2022. Pp. 230-233. (in Russian)
2. Zakgejm A. L., Ivanov A. E., Chernyakov A. E. Osobennosti raboty moshchnyh AlInGaN-svetodiodov pri bol'shih impul'snyh tokah [Features of operation of powerful AlInGaN LEDs at high pulse currents]. Pis'ma v Zhurnal tekhnicheskoj fiziki, 2021. Vol. 47.no.16. Pp. 32-35. (in Russian)
3. Nakysbekov Z., Ismailov D., Bellucci S., Tukhfatullin T., Bogdanov O., Tronin B., Turmanova K., Suyundykova G., Grichshenko V., Pshikov M., Alzhanova A. Concise review of recent advances and applications of the electron linear accelerator ELU 4 in scientific and technical fields. Physical Sciences and Technology, 2024.Vol. 11. no. 1-2. Pp. 32 -42. doi: 10.26577/phst2024v11i1a4
4. Sulaiman N. N., Hasbullah N. F., Saidin N., Javed Y., Khan Z. I. Radiation-induced degradation in optoelectronic devices for satellite applications: a review. Discover Materials, 2025. Vol. 5. no. 1. Pp. 1-22.
5. Polyakov A. Y., Pearton S. J., Frenzer P., Ren F., Liu L., Kim J. Radiation effects in GaN materials and devices. Journal of Materials Chemistry C, 2013. Vol.1. no. 5. pp. 877-887.
6. Brudnyi V., Prudaev I., Oleinik V., Marmaluk A. Electron irradiation degradation of AlGaInP/GaAs light‐emitting diodes. Physica status solidi (A), 2018. Vol.215, no.8, Pp. 1700445. DOI:10.1002/pssa.201700445
7. Meshchurov O.V., Tapero K.B., Figurov V.S., Yurchenkov A.V., Avdyushkin S.A. Issledovanie degradacii otechestvennyh izdelij optoelektroniki vsledstvie strukturnyh povrezhdenij pri vozdejstvii ioniziruyushchego izlucheniya [Study of degradation of domestic optoelectronic products due to structural damage when exposed to ionizing radiation]. Voprosy atomnoj nauki i tekhniki. Seriya: Fizika radiacionnogo vozdejstviya na radioelektronnuyu apparaturu, 2011. No. 2. Pp. 24-28. (in Russian)
8. Ionychev V. K., Shesterkina A.A. Issledovanie glubokih centrov v mikroplazmennyh kanalah fosfidgallievyh svetodiodov zelenogo spektra izlucheniya [Study of deep centers in microplasma channels of gallium phosphide LEDs of green emission spectrum]. Fizika i tekhnika poluprovodnikov, 2017. Vol.51. No.3. Pp.386-389. (in Russian)
9. Gradoboev A.V., Orlova K.N., Asanov I.A. Degradaciya parametrov geterostruktur AlGaInP pri obluchenii bystrymi nejtronami i gamma-kvantami [Degradation of parameters of AlGaInP heterostructures under irradiation with fast neutrons and gamma rays]. Voprosy atomnoj nauki i tekhniki. Seriya: Fizika radiacionnogo vozdejstviya na radioelektronnuyu apparaturu, 2013. No. 2. Pp. 64-66. (in Russian)
10. Romanov N. M., Mokrushina S. A. Vliyanie gamma-oblucheniya na MDP-struktury s tonkim oksidom Al2O3 [Effect of gamma irradiation on MIS structures with thin Al2O3 oxide]. Perspektivnye materialy, 2018. No. 2.Pp. 17-24. (in Russian)
11. Orlova K. N., Gradoboev A. V. Change in radiating power of the algainp heterostructures under irradiation by fast neutrons. 24th International Crimean Conference Microwave & Telecommunication Technology. IEEE, 2014. Pp. 874-875.
12. Burmistrov E. R., Avakyanc L. P., Afanasova M. M. P'ezoelektricheskaya relaksaciya dvumernogo elektronnogo gaza v geterostrukturah s kvantovymi yamami InGaN/GaN [Piezoelectric Relaxation of Two-Dimensional Electron Gas in InGaN/GaN Quantum Well Heterostructures]. Izvestiya vysshih uchebnyh zavedenij, 2021. Vol.64. no.5. Pp.9-19. (in Russian)
13. Rasul A.R., Orlova K.N. Analiz vatt-ampernykh kharakteristik svetodiodov, izgotovlennykh iz razlichnykh materialov [Analysis of watt-ampere characteristics of LEDs made of different materials]. Vestnik NIYAU MIFI, 2024. Vol. 13. No. 1. Pp. 52-58. DOI:10.26583/vestnik.2024.308 (in Russian)
14. Gentsar' P.A. Radiatsionno-stimulirovannaya relaksatsiya vnutrennikh mekhanicheskikh napryazhenii v gomoehpitaksial'nykh plenkakh fosfida galliya [Radiation-induced relaxation of internal mechanical stresses in homoepitaxial gallium phosphide films]. Fizika i tekhnika poluprovodnikov, 2006. Vol. 40. No. 9. Pp. 1051-1053. (in Russian)
15. Gradoboev A. V., Simonova A. V., Orlova K. N. Influence of irradiation by 60 Co gamma-quanta on reliability of IR-LEDs based upon AlGaAs heterostructures [Model of InGaN/GaN LED degradation during current tests taking into account non-uniform temperature and current density distribution in the heterostructure]. Physica status solidi (C), 2016. Vol. 13. No. 10-12. Pp. 895-902.
16. Pastuszak J., Węgierek P. Photovoltaic cell generations and current research directions for their development.Materials, 2022. Vol. 15. No.16.pp. 5542. doi: 10.3390/ma15165542
17. Sergeev V. A., Khodakov A. M., Frolov I.V. Model' degradatsii InGaN/GaN svetodioda pri tokovykh ispytaniyakh s uchetom neodnorodnogo raspredeleniya temperatury i plotnosti toka v geterostrukture [Model of InGaN/GaN LED degradation during current tests taking into account non-uniform temperature and current density distribution in the heterostructure]. Radioehlektronika. Nanosistemy. Informatsionnye tekhnologii, 2020. Vol. 12. No. 3. Pp. 329-334. (in Russian)
Review
For citations:
Orlova K.N., Gradoboev A.V., Beklemisheva A.V., Avanesyan A.R. Determining Method for Lighting Characteristics LEDs. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2025;14(5):431-439. (In Russ.) https://doi.org/10.26583/vestnik.2025.5.6. EDN: SUKDFZ
 
                     
         
             
  Email this article
            Email this article