Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Exact Solutions in the Implicit Form of Nonlinear Mass and Heat Transfer Equations with Variable Coefficients

https://doi.org/10.1134/S2304487X19040084

Abstract

   Various classes of nonlinear mass and heat transfer equations with variable coefficients, c(x)ut = ⌠a(x)f(u)uxIx = b(x)g(u)ux, which admit exact solutions, are considered. The main attention is focused on nonlinear equations of a sufficiently general form, which contain several arbitrary functions that depend on the unknown function u and the spatial variable x. It is important to note that the exact solutions of nonlinear partial differential equations that contain arbitrary functions and are, therefore, sufficiently general, are of the greatest practical interest for testing various numerical and approximate analytical methods to solve corresponding initial-boundary value problems. The method used to find exact solutions is based on the representation of the solution in the implicit form⌠ h(u)du =  ξ(t) + η(x), where the functions h(u), ξ(t), η(x) are determined further by analyzing resulting functional-differential equations. Examples of specif-ic reaction–diffusion type equations and their exact solutions are given. Many new generalized traveling wave solutions and functional separable solutions are described.

About the Author

A. D. Polyanin
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Bauman Moscow State Technical University
Russian Federation

119526

115409

105005

Moscow



References

1. Ovsiannikov L. V. Gruppovye svoystva uravneniy nelineynoy teploprovodnosti [Group properties of non-linear heat equations]. Doklady Acad. Nauk USSR, 1959, vol. 125, no. 3, pp. 492–495 (in Russian).

2. Dorodnitsyn V. A. Ob invariantnykh resheniyakh uravneniya nelineynoy teploprovodnosti s istochnikom [On invariant solutions of the nonlinear heat equation with a source]. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 1982, vol. 22, no. 6, pp. 1393–1400 (in Russian).

3. Galaktionov V. A., Dorodnitsyn V. A., Yelenin G. G., Kurdyumov S. P., Samarskii A. A. A quasilinear equation of heat conduction with a source: peaking, localization, symmetry, exact solutions, asymptotic behavior, structures // J. Soviet Math. 1988. V. 41. № 5. P. 1222–1292.

4. Kudryashov N. A. On exact solutions of families of Fisher equations // Theor. Math. Phys. 1993. V. 94. № 2. P. 211–218.

5. Clarkson P. A., Mansfield E. L. Symmetry reductions and exact solutions of a class of nonlinear heat equations // Phys. D. 1994. V. 70. P. 250–288.

6. Galaktionov V. A. Quasilinear heat equations with first-order sign-invariants and new explicit solutions // Nonlinear Anal. Theory. Methods. Appl. 1994. V. 23. P. 1595–1621.

7. Ibragimov N. H. (Editor). CRC Handbook of Lie Group Analysis of Differential Equations. Symmetries, Exact solutions and Conservation Laws, Vol. 1. Boca Raton: CRC Press, 1994.

8. Doyle Ph. W., Vassiliou P. J. Separation of variables for the 1-dimensional non-linear diffusion equation // Int. J. Non-Linear Mech. 1998. V. 33. № 2. P. 315–326.

9. Hood S. On direct, implicit reductions of a nonlinear diffusion equation with an arbitrary function – generalizations of Clarkson’s and Kruskal’s method // IMA J. Appl. Math. 2000. V. 64. № 3. P. 223–244.

10. Pucci E., Saccomandi G. Evolution equations, invariant surface conditions and functional separation of variables // Physica D. 2000. V. 139. P. 28–47.

11. Estevez P. G., Qu C., Zhang S. Separation of variables of a generalized porous medium equation with nonlinear source // J. Math. Anal. Appl. 2002. V. 275. P. 44–59.

12. Polyanin A. D, Zaitsev V. F. Spravochnik po nelineynym uravneniyam matematicheskoy fiziki [Handbook of non-linear equations of mathematical physics]. Moscow, Fizmatlit, 2002 (in Russian).

13. Kaptsov O. V., Verevkin I. V. Differential constraints and exact solutions of nonlinear diffusion equations // J. Phys. A: Math. Gen. 2003. V. 36. P. 1401–1414.

14. Polyanin A. D, Zaitsev V. F., Zhurov A. I. Metody resheniya nelineinyh uravnenii matematicheskoi fiziki i mehaniki [Solution methods for nonlinear equations of mathematical physics and mechanics]. Moscow, Fizmatlit, 2005 (in Russian).

15. Cherniha R. M., Pliukhin O. New conditional symmetries and exact solutions of nonlinear reaction–diffusion–convection equations // J. Physics A: Math. Theor. 2007. V. 40. № 33. P. 10049–10070.

16. Galaktionov V. A., Svirshchevskii S. R. Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics. Boca Raton: Chapman & Hall/CRC Press, 2007.

17. Polyanin A. D., Zaitsev V. F. Handbook of Nonlinear Partial Differential Equations, 2nd Edition. Boca Raton: CRC Press, 2012 (see also 1st Edition, 2004).

18. Cherniha R. M., Pliukhin O. New conditional symmetries and exact solutions of reaction–diffusion–convection equations with exponential nonlinearities // J. Math. Anal. Appl. 2013. V. 403. P. 23–37.

19. Cherniha R., Serov M., Pliukhin O. Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications. Boca Raton: Chapman & Hall/CRC Press, 2018.

20. Vaneeva O. O., Johnpillai, A. G., Popovycha R. O., Sophocleous C. Extended group analysis of variable coefficient reaction–diffusion equations with power nonlinearities // J. Math. Anal. Appl. 2007. V. 330. № 2. P. 1363–1386.

21. Vaneeva O. O., Popovych R. O., Sophocleous C. Enhanced group analysis and exact solutions of variable coefficient semilinear diffusion equations with a power source // Acta Applicandae Mathematicae. 2009. V. 106. № 1. P. 1–46.

22. Vaneeva O. O., Popovych R. O., Sophocleous C. Extended group analysis of variable coefficient reaction–diffusion equations with exponential nonlinearities // J. Math. Anal. Appl. 2012. V. 396. P. 225–242.

23. Vaneeva O., Zhalij A. Group classification of variable coefficient quasilinear reaction–diffusion equations // Publications de L’Institute Mathématique (Nouvelle série). 2013. V. 94. № 108. P. 81–90.

24. Polyanin A. D. Functional separable solutions of nonlinear reaction-diffusion equations with variable coefficients // Appl. Math. Comput. 2019. V. 347. P. 282–292.

25. Polyanin A. D. Nelineynyye reaktsionno-diffuzionnyye uravneniya s peremennymi koeffitsiyentami: Metod poiska tochnykh resheniy v neyavnom vide [Nonlinear reaction-diffusion equations with variable coefficients: Method for finding exact solutions in implicit form]. Vestnik NIYaU MIFI, 2019, vol. 8, no. 2 (in Russian).

26. Gandarias M. L., Romero J. L., Díaz J. M. Nonclassical symmetry reductions of a porous medium equation with convection // J. Phys. A: Math. Gen. 1999. V. 32. P. 1461–1473.

27. Popovych R. O., Ivanova N. M. New results on group classification of nonlinear diffusion-convection equations // J. Physics A: Math. General. 2004. V. 37. № 30. P. 7547–7565.

28. Ivanova N. M., Sophocleous C. On the group classification of variable-coefficient nonlinear diffusion-convection equations // J. Comput. Applied Math. 2006. V. 197. № 2. P. 322–344.

29. Ivanova N. M. Exact solutions of diffusion-convection equations // Dynamics of PDE. 2008. V. 5. № 2. P. 139–171.

30. Vaneeva O. O., Popovych R. O., Sophocleous C. Group analysis of variable coefficient diffusion-convection equations. I. Enhanced group classification // Lobachevskii J. Mathematics. 2010. V. 31. № 2. P. 100–122.

31. Polyanin A. D. Construction of exact solutions in implicit form for PDEs: New functional separable solutions of non-linear reaction-diffusion equations with variable coefficients // Int. J. Non-Linear Mech. 2019. V. 111. P. 95–105.

32. Basarab-Horwath P., Lahno V., Zhdanov R. The structure of Lie algebras and the classification problem for partial differential equations // Acta Appl. Math. 2001. V. 69. P. 43–94.

33. Lagno V. I., Spichak S. V., Stognii V. I. Simmetriynyy analiz uravneniy evolyutsionnogo tipa [Symmetry analysis of evolution type equations]. Moskva – Izhevsk, Institute of Computer Sciences, 2004 (in Russian).

34. Jia H., Zhao W. X. X., Li Z. Separation of variables and exact solutions to nonlinear diffusion equations with - dependent convection and absorption // J. Math. Anal. Appl. 2008. V. 339. P. 982–995.

35. Cherniha R., Davydovych V. Nonlinear Reaction-Diffusion Systems: Conditional Symmetry, Exact Solutions and Their Applications in Biology. Springer, 2017.

36. Meleshko S. V., Moyo S. On the complete group classification of the reaction–diffusion equation with a delay // J. Math. Anal. Appl. 2008. V. 338. P. 448–466.

37. Polyanin A. D., Zhurov A. I. Exact solutions of linear and non-linear differential-difference heat and diffusion equations with finite relaxation time // Int. J. Non-Linear Mech. 2013. V. 54. P. 115–126.

38. Polyanin A. D., Zhurov A. I. Exact separable solutions of delay reaction-diffusion equations and other nonlinear partial functional-differential equations // Commun. Nonlinear Sci. Numer. Simul. 2014. V. 19. № 3. P. 409–416.

39. Polyanin A. D., Zhurov A. I. Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations // Commun. Nonlinear Sci. Numer. Simul. 2014. V. 19. № 3. P. 417–430.

40. Polyanin A. D., Zhurov A. I. New generalized and functional separable solutions to non-linear delay reaction-diffusion equations // Int. J. Non-Linear Mech. 2014. V. 59. P. 16–22.

41. Polyanin A. D., Zhurov A. I. Nonlinear delay reaction-diffusion equations with varying transfer coefficients: Exact methods and new solutions // Appl. Math. Letters 2014. V. 37. P. 43–48.

42. Polyanin A. D., Zhurov A. I. The functional constraints method: Application to non-linear delay reaction-diffusion equations with varying transfer coefficients // Int. J. Non-Linear Mech. 2014. V. 67. P. 267–277.

43. Polyanin A. D., Sorokin V. G. Nonlinear delay reaction-diffusion equations: Traveling-wave solutions in elementary functions // Appl. Math. Letters. 2015. V. 46. P. 38–43.

44. Polyanin A. D. Generalized traveling-wave solutions of nonlinear reaction–diffusion equations with delay and variable coefficients // Appl. Math. Letters. 2019. V. 90. P. 49–53.

45. Polyanin A. D., Zaitsev V. F. Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems. Boca Raton: CRC Press, 2018.


Review

For citations:


Polyanin A.D. Exact Solutions in the Implicit Form of Nonlinear Mass and Heat Transfer Equations with Variable Coefficients. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2019;8(5):415-427. (In Russ.) https://doi.org/10.1134/S2304487X19040084

Views: 146


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)