Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Nonlinear Differential Equations of the Third and Fourth orders with Exact Solutions Expressed in terms of the Weierstrass Elliptic Function

https://doi.org/10.1134/S2304487X19050031

Abstract

   The classification of ordinary differential equations with exact solutions is a classical mathematical problem. In this work, the classification problem is considered for ordinary differential equations with solutions expressed in terms of the Weierstrass elliptic function. The algorithm of search for such equations is as follows. First, the order of the singularity of the solution is chosen. Then, the order of the sought nonlinear differential equation is set. Next, Newton polygons are used to write the general form of the nonlinear differential equation taking into account the singularity of the solution and the given order for the nonlinear differential equation. After that, limitations for the parameters are found so that the general form of the nonlinear differential equation has an exact solution expressed in terms of the Weierstrass elliptic function. Theorems used to look for parameter limitations are presented. The nonlinear autonomous ordinary differential equations of the third and fourth orders are constructed using the described algorithm. Moreover, nonlinear autonomous differential equations and their solutions expressed in terms of the Weierstrass elliptic function are presented.

About the Authors

S. F. Lavrova
National Research Nuclear University MEPhI(Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



N. A. Kudryashov
National Research Nuclear University MEPhI(Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



A. A. Kutukov
National Research Nuclear University MEPhI(Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



References

1. Painlevé P. Mémoire sur les équations différentielles dont l’intégrale générale est uniforme // Bulletin de la Société Mathématique de France. 1900. Vol. 28. P. 201–261.

2. Painleve P. et al. Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme // Acta mathematica. 1902. Vol. 25. P. 1–85.

3. Painlevé P. Sur les équations différentielles du second ordre á points critiques fixes // CR Acad. Sci. Paris. 1906. Vol. 143. P. 1111–1117.

4. Kudryashov N. A. Methods of Nonlinear Mathematical Physics // Publisher hous Intellekt. – 2010 (in Russian).

5. Ablowitz M. J. et al. Solitons, nonlinear evolution equations and inverse scattering. Cambridge university press, 1991. Vol. 149.

6. Lavrent’ev M. A., Shabat B. V. Methods of Theory of Functions of Complex Variables. – Nauka, 1965. P. 716 (in Russian).

7. Demina M. V., Kudryashov N. A. Explicit expressions for meromorphic solutions of autonomous nonlinear ordinary differential equations // Communications in Non-linear Science and Numerical Simulation. 2011. Vol. 16. № 3. P. 1127–1134.

8. Demina M. V., Kudryashov N. A. From Laurent series to exact meromorphic solutions: The Kawahara equation // Physics Letters A. 2010. Vol. 374. № 39. P. 4023–4029.

9. Kudryashov N. A. Nonlinear differential equations with exact solutions expressed via the Weierstrass function // Zeitschrift für Naturforschung A. 2004. Vol. 59. № 7–8. P. 443–454.

10. Kudryashov N. A., Sinelshchikov D. I. Nonlinear differential equations of the second, third and fourth order with exact solutions // Applied Mathematics and Computation. 2012. Vol. 218. № 21. P. 10454–10467.

11. Kudryashov N. A., Demina M. V. Polygons of differential equations for finding exact solutions // Chaos, Solitons & Fractals. 2007. Vol. 33. № 5. P. 1480–1496.

12. Demina M. V., Kudryashov N. A., Sinel’shchikov D. I. The polygonal method for constructing exact solutions to certain nonlinear differential equations describing water waves // Computational Mathematics and Mathematical Physics. 2008. Vol. 48. № 12. P. 2182.

13. Kudryashov N. A., Kutukov A. A. The program for constructing Newton polygons corresponding to ordinary differential equations of polynomial type // The certificate of state registration of software № 2019617572 issued on 17. 06. 2019

14. Bruno A. D. Power Geometry in Algebraic and Differential Equations –Nauka, 1998 (in Russian).

15. Parkes E. J., Duffy B. R., Abbott P. C. The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations. 2002.

16. Parkes E. J., Duffy B. R. An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations // Computer physics communications. 1996. Vol. 98. № 3. P. 288–300.

17. Kudryashov N. A. Methods of solution construction of nonlinear nonintegrable differential equations // Vestnik NIYaU MIFI. 2015. V. 4. № 2. P. 127 (in Russian).


Review

For citations:


Lavrova S.F., Kudryashov N.A., Kutukov A.A. Nonlinear Differential Equations of the Third and Fourth orders with Exact Solutions Expressed in terms of the Weierstrass Elliptic Function. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2019;8(5):428-436. (In Russ.) https://doi.org/10.1134/S2304487X19050031

Views: 163


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)