Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Exact Solutions of Nonlinear Telegraph Equations with Delay

https://doi.org/10.56304/S2304487X19050079

Abstract

   The following nonlinear telegraph equations with delay are considered: un + H(u)ut = (G(u)ux)+ F (u, w); u= (G(u)ux)+ P(u)ux)+ F (u, w), where u = u(x, t), w = u(x, t -  τ), and τ – is the constant delay time. The equations contain the nonlinear transfer coefficient G(u) of the power-law or exponential type, as well as the coefficients H(u) and P(u) that either are constant or are nonlinear and have the form similar to the form of G(u) The kinetic functions F of all the equations consist of one or several arbitrary functions of one argument. For the equations under consideration, new exact travelling-wave solutions, as well as new exact solutions with generalized and functional separation of variables, have been obtained by means of the modified method of functional constraints. All the solutions are expressed in terms of elementary functions, contain free parameters, and can be used for the formulation of test problems to assess the accuracy of numerical methods for solving nonlinear partial differential equations with delay. Publications presenting exact solutions of equations with delay and describing methods for constructing exact solutions have been reviewed.

About the Author

V. G. Sorokin
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Russian Federation

119526

Moscow



References

1. Bratsun D. A., Zakharov A. P. K voprosu o chislennom raschete prostranstvenno-raspredelennykh dinamicheskikh sistem s zapazdyvaniem po vremeni [On the numerical calculation of spatially extended dynamical systems with time delay]. Vestnik Permskogo Universiteta. Ser. Matematika, Mekhanika, Informatika, 2012, vol. 4, no. 12, pp. 32–41 (in Russian).

2. Polyanin A. D., Zhurov A. I. Metod funkcional’nyh svyazej: Tochnye resheniya nelinejnyh reakcionno-diffuzionnyh uravnenij s zapazdyvaniem. [Method of functional relations: Exact solutions of nonlinear reaction–diffusion equations with delay]. Vestnik NIYaU MIFI, 2013, vol. 2, no. 4, pp. 425–431 (in Russian).

3. Bocharov G. A., Rihan F. A. Numerical modelling in biosciences using delay differential equations // J. Comput. Appl. Math. 2000. V. 125. P. 183–199.

4. Faria T., Trofimchuk S. Nonmonotone travelling waves in a single species reaction–diffusion equation with delay // J. Differ. Equ. 2006. V. 228. P. 357–376.

5. Herz A. V. M. et al. Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay // Proc. Nat. Acad. Sci. 1996. V. 93. P. 7247–7251.

6. Huang J., Zou X. Traveling wavefronts in diffusive and cooperative Lotka–Volterra system with delays // J. Math. Anal. Appl. 2002. V. 271. P. 455–466.

7. Kyrychko Y. N., Hogan S. J. On the use of delay equations in engineering applications // J. of Vibration and Control. 2010. V. 16. № 7–8.

8. Mittler J. E. et al. Influence of delayed viral production on viral dynamics in HIV-1 infected patients // Math. Biosci. 1998. V. 152. P. 143–163.

9. Nelson P. W., Perelson A. S. Mathematical analysis of delay differential equation models of HIV-1 infection // Math. Biosci. 2002. V. 179. P. 73–94.

10. Polyanin A. D., Zhurov A. I. Exact separable solutions of delay reaction–diffusion equations and other nonlinear partial functional-differential equations // Commun. Nonlinear Sci. Numer. Simul. 2014. V. 19. P. 409–416.

11. Shakeri F., Dehghan M. Solution of delay differential equations via a homotopy perturbation method // Math. Comput. Model. 2008. V. 48. P. 486–498.

12. Walter H. O. Topics in Delay Differential Equations // Jahresbericht der Deutschen Mathematiker-Vereinigung. 2014. V. 116. № 2. P. 87–114.

13. Wu J., Zou X. Traveling wave fronts of reaction-diffusion systems with delay // J. Dyn. Differ. Equ. 2001. V. 13. № 3. P. 651–687.

14. Wu J. H. Introduction to neural dynamics and signal transmission delay. Berlin: de Gruyter, 2002.

15. Lu J. G. Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions // Chaos, Solitons and Fractals. 2008. V. 35. P. 116–125.

16. Wang L., Gao Y. Global exponential robust stability of reaction-diffusion interval neural networks with time-varying delays // Phys. Lett. A. 2006. V. 350. P. 342–348.

17. Wu J., Campbell S. A., Bélair J. Time-Delayed Neural Networks: Stability and Oscillations // Encyclopedia of Computational Neuroscience. New York: Springer, 2014. P. 1–8.

18. Polyanin A. D., Sorokin V. G. Reakcionno-diffuzionnye uravneniya s zapazdyvaniem: matematicheskie modeli i kachestvennye osobennosti [Reaction-diffusion equations with delay: mathematical models and qualitative features]. Vestnik NIYaU MIFI, 2017, vol. 6, no. 1, pp. 41–55 (in Russian).

19. Polyanin A. D., Zaitsev V. F. Handbook of Nonlinear Partial Differential Equations, 2nd Edition. Boca Raton: CRC Press, 2012.

20. Polyanin A. D., Zhurov A. I. Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations // Commun. Nonlinear Sci. Numer. Simul. 2014. V. 19. № 3. P. 417–430.

21. Polyanin A. D., Zhurov A. I. Nekotorye metody postroeniya tochnyh reshenij nelinejnyh reakcionno-diffuzionnyh uravnenij s zapazdyvayushchim argumentom i peremennymi koefficientami perenosa [Some methods for the construction of exact solutions of nonlinear delay reaction–diffusion equations with varying transfer coefficients]. Vestnik NIYaU MIFI, 2015, vol. 4, no. 2, pp. 107–118 (in Russian).

22. Polyanin A. D., Zhurov A. I. The functional constraints method: Application to non-linear delay reaction–diffusion equations with varying transfer coefficients // Int. J. Non-Linear Mech. 2014. V. 67. P. 267–277.

23. Polyanin A. D., Zhurov A. I. Nonlinear delay reaction-diffusion equations with varying transfer coefficients: Exact methods and new solutions // Appl. Math. Lett. 2014. V. 37. P. 43–48.

24. Polyanin A. D. Exact generalized separable solutions to nonlinear delay reaction-diffusion equations. Theor. Found. Chem. En+, 2015, vol. 49, no. 1, pp. 107–114.

25. Polyanin A. D., Zhurov A. I. Exact solutions of linear and nonlinear differential-difference heat and diffusion equations with finite relaxation time // Int. J. Non-Linear Mech. 2013. V. 54. P. 115–126.

26. Polyanin A. D., Zhurov A. I. New generalized and functional separable solutions to nonlinear delay reaction-diffusion equations // Int. J. Non-Linear Mech. 2014. V. 59. P. 16–22.

27. Polyanin A. D., Sorokin V. G. Nonlinear delay reaction–diffusion equations: Traveling-wave solutions in elementary functions // Appl. Math. Lett. 2015. V. 46. P. 38–43.

28. Polyanin A. D., Sorokin V. G. Nelinejnye reakcionno-diffuzionnye uravneniya s zapazdyvaniem: Tochnye resheniya tipa begushchej volny [Nonlinear delay reaction–diffusion equations: Exact traveling wave solutions]. Vestnik NIYaU MIFI, 2015, vol 4, no. 2, pp. 119–126 (in Russian).

29. Polyanin A. D. Generalized traveling-wave solutions of nonlinear reaction–diffusion equations with delay and variable coefficients // Appl. Math. Lett. 2019. Vol. 90. P. 49–53.

30. Polyanin A. D. Functional separable solutions of nonlinear reaction–diffusion equations with variable coefficients // Appl. Math. Comput. 2019. V. 347. P. 282–292.

31. Polyanin A. D. Functional separable solutions of nonlinear convection–diffusion equations with variable coefficients // Commun. Nonlinear Sci. Numer. Simul. 2019. V. 73. P. 379–390.

32. Polyanin A. D. Exact solutions to new classes of reaction-diffusion equations containing delay and arbitrary functions. Theor. Found. Chem. En+, 2015, vol. 49, no. 2, pp. 169–175.

33. Polyanin A. D., Zhurov A. I. Nelinejnye reakcionno-diffuzionnye uravneniya s zapazdyvaniem i peremennymi koefficientami perenosa: resheniya s obobshchennym i funkcional’nym razdeleniem peremennyh [Non-linear delay reaction-diffusion equations with varying transfer coefficients: generalized and functional separable solutions]. Mathematical Modeling and Computational Methods, 2015, no. 8, pp. 3–37 (in Russian).

34. Polyanin A. D., Zhurov A. I. Generalized and functional separable solutions to non-linear delay Klein – Gordon equations // Commun. Nonlinear Sci. Numer. Simul. 2014. V. 19. № 8. P. 2676–2689.

35. Polyanin A. D., Sorokin V. G. Tochnye resheniya nelinejnyh reakcionno-diffuzionnyh uravnenij giperbolicheskogo tipa s zapazdyvaniem [Exact solutions to nonlinear delay reaction–diffusion equations of hyperbolic type]. Vestnik NIYaU MIFI, 2014, vol.3, no 2, pp.141–148 (in Russian).

36. Polyanin A. D., Sorokin V. G., and Vyazmin A. V. Nelinejnye reakcionno-diffuzionnye uravneniya giperbolicheskogo tipa s zapazdyvaniem: tochnye resheniya, global’naya neustojchivost’ [Nonlinear delay reaction-diffusion equations of hyperbolic type: Exact solutions and global instability]. Mathematical Modeling and Computational Methods, 2014, no. 4, pp. 53–73 (in Russian).

37. Polyanin A. D., Sorokin V. G., Vyazmin A. V. Exact solutions and qualitative features of nonlinear hyperbolic reaction-diffusion equations with delay. Theor. Found. Chem. En+, 2015, vol. 49, no. 5, pp. 622–635.

38. Sorokin V. G. Tochnye resheniya nekotoryh nelinejnyh uravnenij i sistem uravnenij v chastnyh proizvodnyh s zapazdyvaniem [Exact solutions of some nonlinear partial differential equations with delay and systems of such equations]. Vestnik NIYaU MIFI, 2016, vol. 5, no. 3, pp.199–219 (in Russian).

39. Polyanin A. D., Zhurov A. I. Non-linear instability and exact solutions to some delay reaction-diffusion systems // Int. J. Non-Linear Mech. 2014. V. 62. P. 33–40.

40. Polyanin A. D., Zhurov A. I. The generating equations method: Constructing exact solutions to delay reaction–diffusion systems and other non-linear coupled delay PDEs // Int. J. Non-Linear Mech. 2015. V. 71. P. 104–115.

41. Polyanin A. D. Exact solutions to differential-difference heat and mass transfer equations with a finite relaxation time. Theor. Found. Chem. En+, 2014, vol. 48, no 2, pp.167–174.

42. Polyanin A. D., Zhurov A. I. Exact solutions of nonlinear differential-difference equations of a viscous fluid with finite relaxation time // Int. J. Non-Linear Mech. 2013. V. 57. P. 116–122.

43. Meleshko S. V., Moyo S. On the complete group classification of the reaction-diffusion equation with a delay // J. Math. Anal. Appl. 2008. V. 338. № 1. P. 448–466.

44. Long F.-S., Meleshko S. V. On the complete group classification of the one-dimensional nonlinear Klein – Gordon equation with a delay // Math. Methods Appl. Sci. 2016. V. 39. № 12. P. 3255–3270.

45. Long F.-S., Meleshko S. V. Symmetry analysis of the nonlinear two-dimensional Klein – Gordon equation with a time-varying delay // Math. Methods Appl. Sci. 2017. V. 40. № 13. P. 4658–4673.


Review

For citations:


Sorokin V.G. Exact Solutions of Nonlinear Telegraph Equations with Delay. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2019;8(5):453-464. (In Russ.) https://doi.org/10.56304/S2304487X19050079

Views: 101


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)