Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

LWR Fuel Cycle with Reprocessed Uranium Complete Recycling

https://doi.org/10.1134/S2304487X19060075

Abstract

   In this study, we consider the problem of multiple recycling of uranium in the fuel cycle of thermal neutron reactors. The general approach to reusing recovered uranium extracted from spent fuel is related to its enrichment by the target fissile isotope 235U in cascades of gas centrifuges. However, the reprocessed uranium enrichment has difficulties related to 232, 236U isotopes presence and a higher concentration of 234U comparing to natural uranium. The low-enriched uranium product should meet the requirements on these even-numbered isotopes owing to radiation and neutron-physical characteristics. These conditions lead to obstacles for the complete return of the material to the cycle using the known enrichment schemes. This necessitates the search for new regeneration enrichment schemes that can solve this problem. In this paper, we propose a new configuration based on the modified double cascade of gas centrifuges, which allows consuming the whole amount of reprocessed uranium during the enrichment process. It is preferable to use the proposed cascade scheme when we deal with multiple uranium recycling, starting from the second recycle round. It corresponds to sustainable fuel recovery for a fleet of thermal neutron reactors.

About the Authors

V. A. Nevinitsa
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



A. Yu. Smirnov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); National Research Center “Kurchatov Institute”
Russian Federation

115409

123098

Moscow



G. A. Sulaberidze
National Research Center “Kurchatov Institute”
Russian Federation

123098

Moscow



V. Е. Gusev
National Research Center “Kurchatov Institute”
Russian Federation

123098

Moscow



A. M. Pavlovichev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



A. I. Scherenko
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



E. V. Rodionova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



V. Yu. Blandinsky
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



References

1. Pohitonov Yu. A., Kak mozhno snizit' stoimost' pererabotki obluchennogo topliva i obespechit' nadezhnuyu izolyaciyu vsekh othodov? [How can the cost of processing irradiated fuel be reduced and reliable isolation of all waste products ensured?], Radiochemistry, 2017, vol. 59, no. 6, pp. 481–487 (in Russian).

2. Kislov A. I., Titov A. A., Dmitriev A. M., Sintsov A. E., Radiacionnye aspekty ispol’zovaniya regenerirovannogo urana na OAO “MSZ” pri proizvodstve yadernogo topliva [Radiation aspects of the use of regenerated uranium at JSC “MSZ: in the production of nuclear fuel], Journal of Nuclear and Radiation Safety, 2012, special issue (in Russian).

3. Blandinskij V. Yu., Grol A. V., Dudnikov A. A. Nevinitsa V. A., Fomichenko P. A., Smirnov A. Yu., Sulaberidze G. A., Soglasovannyj podhod k modelirovaniyu vygoraniya pri obluchenii i molekulyarno-selektivnyh processov v razdelitel’nom kaskade dlya ocenki perspektiv razdel’nogo recikla regenerirovannogo urana topliva v legkovodnom reaktore [A coordinated approach to the simulation of fuel burnup during irradiation and molecular selective processes in the separation stage to assess the prospects of separate recycling of regenerated uranium in a light water reactor], Questions of atomic science and technology, the series “Nuclear-Reactor Constants”, 2018, no. 1, pp. 65–72 (in Russian).

4. Bernhardt H. A., Davis Jr. W., Shiflett C. H., Radiation Effects of Alpha Particles on Uranium Hexafluoride. In Proc. of International Conference on Peaceful Uses of Atomic Energy. Geneva, Switzerland, 1958. Report p. 522.

5. Orlov A. A., Kravchenco A. V., Titov E. S., Lebedev A. Ya., Obzor perspektivnyh metodov recirkulyacii urana v yaderno-toplivnom cikle [An overview of recycling methods uranium nuclear fuel cycle], Russian Physics Journal, 2015, vol. 58, no. 2/2, pp. 35–40 (in Russian).

6. Prusakov V. N., Sazykin A. A., Sosnin L. Yu., Utrobin D. V., Cheltsov A. N., Korrekciya izotopnogo sostava regenerirovannogo urana po 232U centrobezhnym metodom s vvedeniem gaza-nositelya [Correcting the isotopic composition of regenerated uranium with respect to 232U by a centrifuge method with introduction of a carrier gas], Atomic Energy, 2008, vol. 105, no. 3, pp. 194–201 (in Russian).

7. Smirnov A. Yu., Sulaberidze G. A., Nevinitsa V. A., Dudnikov A. A., Shmelev A. N., Kaskadnye skhemy v zadachah issledovaniya zakonomernostej izmeneniya izotopnogo sostava mnogokratno regenerirovannogo urana [Cascade schemes in problems of studying the patterns of variation in the isotope composition of multiply regenerated uranium], Nuclear physics and engineering, 2012, vol. 3, no. 5, pp. 396–403 (in Russian).

8. Palkin V. A., Ochistka regenerirovannogo urana v kaskadah s obogashcheniem 235U do 5 % [Purification of regenerated uranium in cascades with enrichment of 235U to 5 %], Atomic Energy, 2013, vol. 115, no. 1, pp. 28–33 (in Russian).

9. Sulaberidze G. A., Borisevich V. D., Xie Q. X., Quasiideal cascades with an additional flow for separation of multicomponent isotope mixtures, Theoretical Foundations of Chemical Engineering, 2006, vol. 40, no. 1, pp. 5–14.

10. Palkin V. A., Razdelenie izotopov urana v kaskade s promezhutochnym otborom [Uranium Isotope Separation in a Cascade with Additional Product Flow], Prospective Materials, 2010, vol. 8, pp. 11–14 (in Russian).

11. Smirnov A. Yu., Sulaberidze G. A., Obogashchenie regenerirovannogo urana s odnovremennym razbavleniem <sup>232-236</sup>U prirodnym syr’em i otval’nym uranom [Enrichment of Regenerated Uranium with Simultaneous Dilution of <sup>232-236</sup>U by Raw and Waste Uranium], Atomic Energy, 2014, vol. 117, no. 1, pp. 36–42 (in Russian).

12. Palkin V. A., Primenenie kvaziideal’nyh kaskadov i operacii razbavleniya dlya ochistki regenerirovannogo geksaftorida urana [Application of Quaziideal Cascades and the Operation of Dilution for Purification of Regenerated Uranium Hexafluoride], Atomic Energy, 2016, vol. 121, no. 3, pp. 152–157 (in Russian).

13. Palkin V. A., Maslyukov E. V., Ochistka regenerirovannogo urana v dopolnitel’nom otbore R-kaskada i ego obogashchenie v ordinarnom kaskade [Purification of reprocessed uranium in an additional product flow of a matched abundance ratio cascade and its enrichment in an ordinary cascade], Theoretical Foundations of Chemical Engineering, 2016, vol. 50, no. 5, pp. 711–717 (in Russian).

14. Palkin V. A., Purification of Regenerated Uranium in a Two-Cascade Scheme Using Intermediate Product Extraction in One of the Cascades, Atomic Energy, 2016, vol. 121, no. 1, pp. 43–47.

15. Sulaberidze G. A., Borisevich V. D, Quanxin Xie., O nekotoryh razdelitel’nyh problemah pri vovlechenii regenerirovannogo urana v toplivnyj cikl [On some separation problems involving the recycled uranium in the fuel cycle], Sbornik dokladov IX mezhdunarodnoi nauchnoi conferentsii “Fiziko-khimicheskiye protsessy pri selektsii atomov i molekul”, Rossiya, Zvenigorod [Proc. of the 9th international scientific conference “Physico-chemical processes in the selection of atoms and molecules’, Russia, Zvenigorod], 2004, pp. 78–85 (in Russian).

16. Sazykin A. A., Kvaziideal’nye kaskady dlya razdeleniya mnogokomponentnyh smesej izotopov [Quasidial cascades for separation of multicomponent mixtures of isotopes], Sbornik dokladov V mezhdunarodnoi nauchnoi conferentsii “Fiziko-khimicheskiye protsessy pri selektsii atomov i molekul”, Rossiya, Zvenigorod [Proc. of the 5th scientific conference “Physico-chemical processes in the selection of atoms and molecules”, Russia, Zvenigorod], 2000, pp. 51–57 (in Russian).

17. De la Garza A., Garrett G. A., Murphy J. E. Multicomponent isotope separation in cascades, Chemical Engineering Science, 1961, vol. 15, pp. 188–209.

18. Smirnov A. Yu., Gusev V. E., Sulaberidze G. A., Nevinitsa V. A., Fomichenko P. A., Obogashchenie regenerirovannogo urana v dvojnom kaskade gazovyh centrifug s ego polnym vozvratom v vosproizvodstvo topliva [Reprocessed uranium re-enrichment in a double cascade of gas centrifuges providing its complete return to the nuclear fuel cycle], Vestnik NIYaU MIFI, 2018, vol. 7, no. 6, pp. 449–457 (in Russian).


Review

For citations:


Nevinitsa V.A., Smirnov A.Yu., Sulaberidze G.A., Gusev V.Е., Pavlovichev A.M., Scherenko A.I., Rodionova E.V., Blandinsky V.Yu. LWR Fuel Cycle with Reprocessed Uranium Complete Recycling. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2019;8(6):498-506. (In Russ.) https://doi.org/10.1134/S2304487X19060075

Views: 172


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)