The Qualitative Features of the Numerical Integration Problems with a Boundary Layer by Nonlocal Transformations
https://doi.org/10.1134/S2304487X19060099
Abstract
The qualitative features of the numerical integration of two-point boundary-value problems of boundary-layer type by using nonlocal transformations are described. Such transformations, sometimes also called Sundman-type transformations, are defined by using an auxiliary differential equation and allow one to “stretch” the boundary-layer region (after which any adequate numerical methods with a fixed stepsize can be applied). Multiparameter nonlinear singularly perturbed boundary-value problems with a small parameter having exact solutions in elementary functions are presented, which can be used to test various numerical methods on non-uniform grids. Particular attention is paid to the study of the most difficult boundary-value problems for numerical analysis, which have non-monotonic solutions or degenerate solutions at the boundary of the boundary-layer. A comparison of numerical and exact solutions shows the high efficiency of the nonlocal transformation method for numerical integration of boundary-value problems with a boundary layer.
Keywords
About the Authors
A. D. PolyaninRussian Federation
119526
105005
115409
Moscow
I. K. Shingareva
Mexico
Sonora
Hermosillo
References
1. Van Dyke M., Perturbation Methods in Fluid Mechanics, New York, Academic Press, 1964.
2. Kevorkian J., Cole J. D. Perturbation Methods in Applied Mathematics. New York: Springer, 1981.
3. Lagerstrom P. A. Matched Asymptotic Expansions. Ideas and Techniques. New York: Springer, 1988.
4. Il’in A. M. Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Providence: American Mathematical Society, 1992.
5. Nayfeh A. H. Perturbation Methods. New York: Wiley–Interscience, 2000.
6. Polyanin A. D., Kutepov A. M., Vyazmin A. V., Kazenin D. A. Hydrodynamics, Mass and Heat Transfer in Chemical Engineering. London: Taylor & Francis, 2002.
7. Polyanin A. D., Zaitsev V. F. Handbook of Exact Solutions for Ordinary Differential Equations, 2nd ed. Boca Raton–London: Chapman & Hall / CRC Press, 2003.
8. Verhulst F. Methods and Applications of Singular Perturbations, Boundary Layers and Multiple Timescale Dynamics. New York: Springer, 2005.
9. Bakhvalov N. S., On the optimization methods for solving boundary value problems with boundary layers, Zh. Vychisl. Math. Fiz., 1969, vol. 24, pp. 841–859 (in Russian).
10. Il’in A. M., A difference scheme for a differential equation with a small parameter affecting the highest derivative, Mat. Zametki, 1969, vol. 6, pp. 237–248 (in Russian).
11. Vulanovic R. A uniform numerical method for quasilinear singular perturbation problems without turning points // Computing. 1989. V. 41. № 1. P. 97–106.
12. Jain M. K., Iyengar S. R. K., Subramanyam G. S. Variable mesh methods for the numerical solution of two-point singular perturbation problems // Comp. Methods in Appl. Mech. Eng. 1984. V. 42. № 3. P. 273–286.
13. Shishkin G. I., Setochnyye approksimatsii singulyarno vozmushchennykh ellipticheskikh i parabolicheskikh uravneniy [Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations], Ekaterinburg, Ural Branch of Russian Academy of Sciences, 1992 (in Russian).
14. Beckett G., Mackenzie J. A. Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem // Appl. Numer. Math. 2000. V. 35. № 2. P. 87–109.
15. Farrell P., Hegarty A., Miller J. M., O’Riordan E., Shishkin G. I. Robust Computational Techniques for Boundary Layers. Boca Raton–London: Chapman & Hall / CRC Press, 2000.
16. Qiu Y., Sloan D. M., Tang T. Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution, analysis of convergence // J. Comput. Appl. Math. 2000. V. 116. № 1. P. 121–143.
17. Frohner A., Roos H.-G. £-uniform convergence of a defect correction method on a Shishkin mesh // Appl. Numerical Math. 2001. V. 37. P. 79–94.
18. Miranker W. L. Numerical Methods for Stiff Equations and Singular Perturbation Problems. Dordrecht: Reidel Publ, 2001.
19. Aziz T., Khan A. A spline method for second-order singularly perturbed boundary-value problems // J. Comput. Appl. Math. 2002. V. 147. № 2. P. 445–452.
20. Vigo-Aguiar J., Natesan S. An efficient numerical method for singular perturbation problems // J. Comput. Appl. Math. 2006. V. 192. № 1. P. 132–141.
21. Rao S. C. S., Kumar M. Exponential B-spline collocation method for self-adjoint singularly perturbed boundary value problems // Appl. Numerical Math. 2008. V. 58. P. 1572–1581.
22. Shishkin G. I., Shishkina L. P. Difference Methods for Singular Perturbation Problems. Boca Raton: Chapman & Hall/CRC Press, 2009.
23. Kopteva N., O’Riordan E. Shishkin meshes in the numerical solution of singularly perturbed differential equations // Int. J. Numer. Analysis and Modeling. 2010. V. 7. № 3. P. 393–415.
24. Vulkov L. G., Zadorin A. I. Two-grid algorithms for an ordinary second order equation with an exponential boundary layer in the solution // Int. J. Numer. Analysis and Modeling. 2010. V. 7. № 3. P. 580–592.
25. Attili B. S. Numerical treatment of singularly perturbed two point boundary value problems exhibiting boundary layers // Commun. Nonlinear Sci. Numer. Simulat. 2011. V. 16. № 9. P. 3504–3511.
26. Liu C.-S. The Lie-group shooting method for solving nonlinear singularly perturbed boundary value problems // Commun. Nonlinear Sci. Numer. Simulat. 2012. V. 17. № 4. P. 1506–1521.
27. Das P. Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems // J. Comput. Appl. Math. 2015. V. 290. P. 16–25.
28. Brdar M., Zarin H. A singularly perturbed problem with two parameters on a Bakhvalov-type mesh // J. Comput. Appl. Math. 2016. V. 292. P. 307–319.
29. Zarin H. Exponentially graded mesh for a singularly perturbed problem with two small parameters // Appl. Numerical Math. 2017. V. 120. P. 233–242.
30. Ahmadinia M., Safari Z. Numerical solution of singularly perturbed boundary value problems by improved least squares method // J. Comput. Appl. Math. 2018. V. 331. P. 156–165.
31. Polyanin A. D., Shingareva I. K. Application of non-local transformations for numerical integration of singularly perturbed boundary-value problems with a small parameter // Int. J. Non-Linear Mechanics. 2018. V. 103. P. 37–54.
32. Polyanin A. D., Shingareva I. K., Singularly perturbed boundary value problems with a boundary layer: Method of nonlocal transformations, test problems, and numerical integration, Vestnik NIYaU MIFI, 2018, vol. 7, no. 1, pp. 33–51 (in Russian).
33. Beckett G., Mackenzie J. A. Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem // Appl. Numer. Math. 2000. V. 35. № 2. P. 87–109.
34. Farrell P., Hegarty A., Miller J. M., O’Riordan E., Shishkin G. I. Robust Computational Techniques for Boundary Layers. Boca Raton–London: Chapman & Hall / CRC Press, 2000.
35. Qiu Y., Sloan D. M., Tang T. Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution, analysis of convergence // J. Comput. Appl. Math. 2000. V. 116. № 1. P. 121–143.
36. Frohner A., Roos H.-G. £-uniform convergence of a defect correction method on a Shishkin mesh // Appl. Numerical Math. 2001. V. 37. P. 79–94.
37. Miranker W. L. Numerical Methods for Stiff Equations and Singular Perturbation Problems. Dordrecht: Reidel Publ, 2001.
38. Aziz T., Khan A. A spline method for second-order singularly perturbed boundary-value problems // J. Comput. Appl. Math. 2002. V. 147. № 2. P. 445–452.
39. Vigo-Aguiar J., Natesan S. An efficient numerical method for singular perturbation problems // J. Comput. Appl. Math. 2006. V. 192. № 1. P. 132–141.
40. Rao S. C. S., Kumar M. Exponential B-spline collocation method for self-adjoint singularly perturbed boundary value problems // Appl. Numerical Math. 2008. V. 58. P. 1572–1581.
41. Shishkin G. I., Shishkina L. P. Difference Methods for Singular Perturbation Problems. Boca Raton: Chapman & Hall/CRC Press, 2009.
42. Kopteva N., O’Riordan E. Shishkin meshes in the numerical solution of singularly perturbed differential equations // Int. J. Numer. Analysis and Modeling. 2010. V. 7. № 3. P. 393–415.
43. Vulkov L. G., Zadorin A. I. Two-grid algorithms for an ordinary second order equation with an exponential boundary layer in the solution // Int. J. Numer. Analysis and Modeling. 2010. V. 7. № 3. P. 580–592.
44. Attili B. S. Numerical treatment of singularly perturbed two point boundary value problems exhibiting boundary layers // Commun. Nonlinear Sci. Numer. Simulat. 2011. V. 16. № 9. P. 3504–3511.
45. Liu C.-S. The Lie-group shooting method for solving nonlinear singularly perturbed boundary value problems // Commun. Nonlinear Sci. Numer. Simulat. 2012. V. 17. № 4. P. 1506–1521.
46. Das P. Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems // J. Comput. Appl. Math. 2015. V. 290. P. 16–25.
47. Brdar M., Zarin H. A singularly perturbed problem with two parameters on a Bakhvalov-type mesh // J. Comput. Appl. Math. 2016. V. 292. P. 307–319.
48. Zarin H. Exponentially graded mesh for a singularly perturbed problem with two small parameters // Appl. Numerical Math. 2017. V. 120. P. 233–242.
49. Ahmadinia M., Safari Z. Numerical solution of singularly perturbed boundary value problems by improved least squares method // J. Comput. Appl. Math. 2018. V. 331. P. 156–165.
50. Polyanin A. D., Shingareva I. K. Application of non-local transformations for numerical integration of singularly perturbed boundary-value problems with a small parameter // Int. J. Non-Linear Mechanics. 2018. V. 103. P. 37–54.
Review
For citations:
Polyanin A.D., Shingareva I.K. The Qualitative Features of the Numerical Integration Problems with a Boundary Layer by Nonlocal Transformations. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2019;8(6):515-532. (In Russ.) https://doi.org/10.1134/S2304487X19060099