Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Automation of the Construction of Exact Solutions of Nonlinear Differential Equations

https://doi.org/10.1134/S2304487X19060038

Abstract

   The AFES program (automatic finding exact solutions) designed to find exact solutions of polinomial ordinary differential equations has been described. The simplest equations method has been used to find exact solutions. The method consists in constructing exact solutions of differential equations using a general solution of a lower order differential equation. In order to choose the form of the exact solution, it is necessary to determine the pole order of the solution of the original equation and the pole order of the solution of the simplest equation. The program for automatically constructing Newton polygons ACNP (automatic construction of Newton polygons) has been used. The Riccati equation and the equation for the elliptic Weierstrass function have been considered as simple equations. In order to test the program, examples of constructing exact solutions of various nonlinear differential equations are given. The AFES program is written in the Maple computer algebra system. The algorithm of the program and examples of its application are given. The AFES program has several advantages over wellknown programs for finding exact solutions of differential equations. In particular, constructed exact solutions are different and they cannot be transformed to each other.

About the Authors

N. A. Kudryashov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



A. A. Kutukov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409

Moscow



References

1. Kudryashov N. A. Periodic and solitary waves of the Biswas–Arshed equation // Optik, 2020. V. 200. P. 163442.

2. Kudryashov N. A. The Painleve approach for finding solitary wave solutions of nonlinear nonintegrable differential equations // Optik, 2019. V. 183. P. 642–649.

3. Kudryashov N. A. Construction of nonlinear differential equations for description of propagation pulses in optical fiber // Optik, 2019. V. 192. P. 162964.

4. Kuramoto Y., Tsuzuki T. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium // Prog. Theor. Phys., 1976. V. 55. № 2. P. 356–369.

5. Sivashinsky G. I. Instabilities, pattern formation, and turbulence in flames // Annu. Rev. Fluid Mech., 1983. V. 15. № 1. P. 179–199.

6. Aspe H., Depassier M. C. Instabilities, pattern formation, and turbulence in flames // Phys. Rev. A., 1990. V. 41. I. 6. P. 3125–3128.

7. Parkes E. J., Duffy B. R. An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations // Comput. Phys. Commun., 1996. V. 98. I. 3. P. 288–300.

8. Liang S., Jeffrey D. J. Automatic computation of the travelling wave solutions to nonlinear PDEs // Comput. Phys. Commun., 2008. V. 178. I. 9. P. 700–712.

9. He J.-H., Wu X.-H. Exp-function method for nonlinear wave equations // Chaos, Solitons & Fractals, 2006. V. 30. I. 3. P. 700–708.

10. Wang M., Li X., Zhang J. The (G'/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics // Phys. Lett. A., 2008. V. 372. I. 4. P. 417–423.

11. Kudryashov N. A. Method of the Logistic Function for Finding Analytical Solutions of Nonlinear Differential Equations // Modeling and Analysis of Information Systems, 2015. V. 22. I. 1. P. 23–37.

12. Kudryashov N. A. Simplest equation method to look for exact solutions of nonlinear differential equations // Chaos, Solitons & Fractals, 2005. V. 24. I. 5. P. 1217–1231.

13. Kudryashov N. A. Metody nelinejnoj matematicheskoj fiziki [Methods of nonlinear mathematical physics]. Izdatelskii dom Intellekt, 2010, 368 p.

14. Kudryashov N. A. A note on the G’/G-expansion method // Appl. Math. Comput., 2010. V. 217. I. 4. P. 1755–1758.

15. Kudryashov N. A. Seven common errors in finding exact solutions of nonlinear differential equations // Commun. Nonlinear Sci. Numer. Simul., 2009. V. 14. I. 9–10. P. 3507–3529.

16. Kudryashov N. A. Be careful with the Exp-function method // Commun. Nonlinear Sci. Numer. Simul., 2009. V. 14. I. 5. P. 1881–1890.

17. Kudryashov N. A., Kutukov A. A. Programma postroeniya tochnyh reshenij nelinejnykh obyknovennykh differentsial'nykh uravnenii v polinomialnoi forme [The program for constructing exact solutions of nonlinear ordinary differential equations in polynomial form]. Certificate of RF registration of a computer program, no. 2019661587, 2019.

18. Kudryashov N. A., Kutukov A. A. Automatic construction of Newton polygons corresponding to polynomial ordinary differential equations. Vestnik NIYaU MIFI, 2019, vol. 8, no. 3, pp. 284–289 (in Russian).

19. Kudryashov N. A., Kutukov A. A. Programma dlya postroeniya mnogougol’nikov N’yutona, sootvetstvuyushchih obyknovennym differentsial’nym uravneniyam polinomial’nogo vida [The program for constructing Newton polygons corresponding to ordinary differential equations of polynomial form]. Certificate of RF registration of a computer program, no. 2019617572, 2019.

20. Bruno A. D. Asymptotics and expansions of solutions of an ordinary differential equation. Uspekhi mat. nauk, 2004, vol. 59, no. 3, pp. 31–80 (in Russian).

21. Kudryashov N. A. A generalized model for description of propagation pulses in optical fiber // Optik, 2019. V. 189. P. 42–52.


Review

For citations:


Kudryashov N.A., Kutukov A.A. Automation of the Construction of Exact Solutions of Nonlinear Differential Equations. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2019;8(6):533-539. (In Russ.) https://doi.org/10.1134/S2304487X19060038

Views: 150


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)