Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

Analytical Solution of a Heat Exchange Problem for Turbulent Boundary Layer

https://doi.org/10.1134/S2304487X19060026

Abstract

   Based on the definition of an additional sought-for function (ASF) and additional boundary conditions (ABC), a highly accurate solution of the heat transfer problem in a turbulent boundary layer for boundary conditions of the first kind was obtained. The relation characterizing the change of the thermal boundary layer thickness that depends on longitudinal variables is taken as an additional sought-for function. The use of this function makes it possible to reduce the partial differential equation to the ordinary differential equation. Additional boundary conditions are accepted in such a form that their satisfying is equal to satisfying an equation at the boundary points. Empirical formulas of the velocity profile and its thickness in the turbulent dynamic boundary layer were used to obtain the solution of the problem for the thermal turbulent layer. Based on the results one can conclude that the thickness of the laminar thermal boundary layer is almost twice the thickness of the turbulent one.

About the Authors

A. V. Eremin
Samara State Technical University
Russian Federation

443001

Samara



V. K. Tkachev
Samara State Technical University
Russian Federation

443001

Samara



T. B. Tarabrina
Samara State Technical University
Russian Federation

443001

Samara



I. V. Kudinov
Samara State Technical University
Russian Federation

443001

Samara



S. V. Kolesnikov
Filial “Samara” PJSC “T Plus”
Russian Federation

443100

Samara



References

1. Shlihting G. Teoriya pogranichnogo sloya [Boundary-layer theory]. Moscow, Nauka, 1969. 742 p.

2. Pribytkov I. A., Levitskiy I. A. Teoreticheskie osnovy teplotekhniki [Theoretical basics of heat]. Moscow, Akademiya, 2004. 464 p.

3. Isaev S. I., Kozhinov I. A., Kofanov V. I. i dr. Teoriya teploobmena [Heat exchange theory]: Uchebnik dlya vuzov / Pod red. A. I. Leontyeva. Moscow, Vysshaya shkola, 1979. 495 p.

4. Yudaev B. N. Teploperedacha [Heat transfer]: Uchebnik dlya vuzov, Moscow, Vysshaya shkola, 1981.

5. Zhukovskiy V. S. Osnovy teorii teploperedachi [Basic theory of heat transfer]. Moscow–Leningrad, Gosudarstvennoye Energeticheskoye Izdatelstvo, 1960. 211 p.

6. Bolgarskiy A. V., Mukhachev G. A., Shchukin V. K. Teplodinamika i teploperedacha [Thermodynamics and heat transfer]. Moscow, Vysshaya shkola, 1975. 495 p.

7. Mikheev M. A., Mikheeva I. M. Osnovy teploperedachi [Basic heat transfer]. Moscow, Energiya, 1977. 344 p.

8. Loytsyansky L. G. Mekhanika zhidkosti i gaza [Fluid mechanics]. Moscow, Drofa, 2003. 840 p.

9. Stefanyuk E. V., Kudinov V. A. Obtaining analytical solutions of equations of hydrodynamic and thermal boundary layers by means of introduction of additional boundary conditions. Teplophizika vysokikh temperatur. 2010. V. 48. № 2. P. 290–302 (in Russian).

10. Kudinov I. V., Kudinov V. A., Eremin A. V., Kolesnikov S. V. Matematicheskoe modelirovanie gidrodinamiki i teploobmena v dvizhushchikhsya zhidkostyakh [Mathematical modeling of hydrodynamics and heat transfer in moving fluids]. Sankt-Peterburg, Lan’ Publ., 2015. 208 p.

11. Kudinov I. V., Branfileva A. N., Eremin A. V., Skvortsova M. P. Heat transfer simulation in stirring boundary layer using the semiempirical turbulence theory. Vestnik Samarskogo gosudarstvennogo tehnicheskogo universiteta. Seriya: Phiziko-matematicheskiye nauki. 2014. № 4 (37). P. 157–169 (in Russian).

12. Stefanyuk E. V. Model’nye predstavleniya analiticheskikh reshenii kraevyh zadach teorii teploobmena na osnove vvedeniya dopolnitel’nykh granichnykh usloviy. Diss. dokt. tekhn. nauk [Model representations of analytical solutions of boundary value problems of heat transfer theory based on the introduction of additional boundary conditions. Dr. eng. sci. diss.]. Moscow, MATI Publ., 2010. 337 p.


Review

For citations:


Eremin A.V., Tkachev V.K., Tarabrina T.B., Kudinov I.V., Kolesnikov S.V. Analytical Solution of a Heat Exchange Problem for Turbulent Boundary Layer. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2019;8(6):540-545. (In Russ.) https://doi.org/10.1134/S2304487X19060026

Views: 108


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)