Preview

Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI"

Advanced search

BIG DATA PROCESSING TECHNIQUES IN FINANCIAL CONTROL TASKS

https://doi.org/10.26583/vestnik.2022.5

Abstract

Every year the volume of corporate data to be analysed in financial controls increases, which makes it relevant to introduce Big Data processing techniques into the practice of control subjects. The purpose of the study is to develop and test three techniques of Big Data processing in order to solve the problems of public and private sector organisations carrying out activities in the field of financial control. As research methods, we have chosen three most promising and effective means of processing Big Data, which at the same time do not require the use of complicated mathematical apparatus or significant computer power for their implementation, namely, a statistical tool for detecting errors in financial data Benford's law, clustering method of K-means and the means BI-system Power BI. The result of the study is the confirmation of the effectiveness and cost efficiency of the considered techniques of processing Big Data and the justification of the practical possibility of their implementation as financial control tools. The research was conducted in the student Financial Intelligence Laboratory of NRNU MEPhI.

About the Authors

V. M. Sushkov
National Nuclear Research University MEPhI
Russian Federation


P. Y. Leonov
National Nuclear Research University MEPhI
Russian Federation


References

1. Leonov P.Y., Suyts V.P., Rychkov V.A., Ezho¬va A.A., Sushkov, V.M. Kuznetsova, N.V. Possibility of Benford’s Law Application for Diagnosing Inaccuracy of Financial Statements. Klimov, V.V., Kelley, D.J. (eds) Biologically Inspired Cognitive Architectures 2021. BICA 2021. Studies in Computational Intelligence, 2021. Vol. 1032. Springer, Cham. Р. 243–248.

2. Alekseev M.A. Primenimost' zakona Benforda dlja opredelenija dostovernosti finansovoj otchetnosti [Applicability of Benford's Law for determining the reliability of financial statements]. Vestnik NGUJeU, 2016. № 4. Р. 114–128 (in Russian).

3. Sujc V.P., Horin A.N., Zhakipbekov D.S. Diagnostika nedostovernosti otchetnosti organizacii: statisticheskie metody v ocenke dostovernosti buhgalterskoj otchetnosti [Diagnosing the unreliability of an organisation's accounts: statistical methods in assessing the reliability of accounting records]. Audit i finansovyj analiz. M.: OOO Izdatel'stvo «DSM Press» Publ. 2015. № 1. Р. 179–188 (in Russian).

4. Zverev E., Nikiforov A. Raspredelenie Benforda: Vyjavlenie nestandartnyh jelementov v bol'shih sovokupnostjah finansovoj informacii [Benford’s distribution: Identifying irregularities in large sets of financial information]. Vnutrennij kontrol' v kreditnoj organizacii. 2018. № 4 (40). Р. 4–18 (in Russian).

5. Nigrini M.J. Benford’s law: applications for forensic accounting, auditing and fraud detection. Hoboken, New Jersey, John Wiley & Sons. 2012. Р. 320.

6. Leonov P.Y., Suyts V.P., Kotelyanets O.S., Ivanov N.V. K-Means Method as a Tool of Big Data Analysis in Risk-Oriented Audit. Communications in Computer and Information Science, 2019. Vol. 1054. Q. 3. Р. 206–216.

7. Lushin L.Je. Algoritm primenenija program¬mnogo obespechenija Power BI sub#ektami pervichnogo finansovogo monitoringa v celjah vyjavlenija podozritel'nyh buhgalterskih zapisej: dipl. rabota [Algorithm of application of Power BI software by reporting entities to identify suspicious accounting entries: graduate thesis]. M.: NIJaU MIFI [NRNU MEPhI], 2022 (in Russian).


Review

For citations:


Sushkov V.M., Leonov P.Y. BIG DATA PROCESSING TECHNIQUES IN FINANCIAL CONTROL TASKS. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta "MIFI". 2022;11(5):348-357. (In Russ.) https://doi.org/10.26583/vestnik.2022.5

Views: 297


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-487X (Print)